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Abstract

Limited asset market participation (LAMP) and trade openness are crucial features

that characterize all real-world economies. We study equilibrium determinacy and

optimal monetary policy in a model of a small open economy with LAMP. With low

enough participation in asset markets, conventional wisdom concerning the stabilizing

benefits of policy inertia can be overturned, irrespective of the constraint of a zero

lower bound on the nominal interest rate. In contrast to recent studies, trade openness

plays an important stabilizing role in LAMP economies. Optimal monetary policy is

derived as a robust timeless rule, where the optimal level of inertia depends on the

degree of trade openness. The optimal rule is shown to be super-inertial for standard

economies, whereas the degree of inertia is significantly lower and not super-inertial

for LAMP economies.
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1 Introduction

Limited asset market participation (LAMP) is a well documented feature of both developing

and developed economies. While its implications for monetary policy have recently been

studied, the focus has largely been limited to closed economies. This paper seeks to address

this gap. Our results suggest that trade openness and LAMP have important consequences

for the design of monetary policy. First, we challenge the conventional wisdom on the

benefits of policy inertia in monetary policy rules for the prevention of indeterminacy and

self-fulfilling expectations. Second, we show that LAMP alters the trade-offs faced by a

welfare-maximizing policymaker, such that super-inertial policy is no longer optimal in the

presence of LAMP. In standard economies, we find that the optimal rule places a weaker

response to both domestic inflation and output, and a lower degree of super-inertia, as

the economy becomes more open to trade. However, in LAMP economies, the optimal

policy coefficients become more strongly negative as trade openness increases, with a lower

(possibly negative) weight for the degree of interest-rate smoothing.

LAMP is commonly introduced into two-agent New Keynesian (TANK) models by allowing

for a share of ‘rule-of-thumb consumers’, a concept coined by Mankiw (2000) and further

popularized by Gaĺı et al. (2004).1 Often referred to as ‘hand-to-mouth consumers’ (e.g, by

Kaplan et al., 2014), these households differ from Ricardian consumers in that they hold no

assets and consume all current income. The empirical evidence supports the inclusion of a

large share of hand-to-mouth behaviour. For example, Aguiar et al. (2020) estimate that

40% of US households are hand-to-mouth based on the Panel Study of Income Dynamics.

For low and middle-income countries, financial exclusion is estimated to be significantly

higher, as illustrated by Figure 1.

This paper makes two main contributions to the literature. First, we examine the de-

terminacy properties of a small open economy (SOE) with LAMP, focusing on the role

of monetary policy inertia and trade openness for indeterminacy of popular Taylor-type

feedback rules with and without the zero lower bound on the nominal interest rate. Then,

we replace the feedback rule with a microfounded welfare criterion and examine the im-

plications of LAMP and trade openness for optimal monetary policy under commitment,

where the central bank is concerned about nominal interest rate volatility.

1It has been shown that for many purposes TANK models provide an appropriate theoretical shortcut to
fully heterogeneous-agent New Keynesian models. See, e.g., Debortoli and Gaĺı (2017) and Bilbiie (2020).
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Figure 1: Financial inclusion against real GDP per capita. Financial inclusion is defined as the %
of (aged 15+) population with an account at a financial institution or with a mobile-money-service
provider, source: World Bank, Global Financial Inclusion Database. Real per capita GDP, source:
World Bank national accounts data, and OECD National Accounts data files.

1.1 Monetary Policy Inertia and Trade Openness

As shown by Bilbiie (2008), LAMP can overturn the contractionary aggregate demand

effect of a real interest rate increase in a closed economy. This results in an ‘inverted ag-

gregate demand logic’ (IADL) that requires an ‘inverted Taylor principle’ for determinacy.

The emergence of IADL depends on whether the profit channel overshadows the labour

income channel. In the absence of full asset market participation, the increase in firm

profits via a fall in marginal cost can dominate the effect of lower wages, leading to an ex-

pansionary effect of increasing interest rates.2 While Boerma (2014) and Buffie and Zanna

(2018) examine the determinacy implications of LAMP in the open economy, they limit

attention only to simple inflation-targeting rules.3 We add to this literature by focusing on

the role of monetary policy inertia, a well-documented feature of central bank behaviour,

including price-level targeting rules (so-called Wicksellian rules).

We find that interest-rate smoothing has contrasting effects on the determinacy properties

of standard and IADL economies. In the standard case, monetary policy inertia reduces

the possibility of indeterminacy, whereas policy inertia increases its likelihood under IADL.

2Colciago (2011) and Ascari et al. (2017) argue that nominal wage stickiness dampens the profit channel
and can help restore the Taylor principle in closed economies. Buffie (2013) shows, however, that real wage
rigidity is key for preventing the emergence of IADL.

3Boerma (2014) considers interest-rate rules that react to domestic-price inflation and output, whereas
Buffie and Zanna (2018) examine feedback rules that only target consumer-price inflation.
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This highlights an important caveat concerning the benefits of relying on interest-rate

smoothing to help alleviate potential problems of indeterminacy. In the absence of LAMP,

Woodford (2003a, chap. 4), Bullard and Mitra (2007), and Ascari and Ropele (2009)

find that indeterminacy can in general be eliminated by adopting super-inertial rules,

while several studies show that price-level targeting in particular helps improve stability

compared to inflation targeting.4 More recently, these benefits have been described in

terms of “make-up” strategies for central banks (see, e.g., Powell, 2020; Svensson, 2020).5

We find that while determinacy is always possible under a price-level targeting rule in the

standard case, there are many degrees of LAMP for which determinacy is not possible under

IADL. These results are shown to be robust to a variety of popular specifications for the

interest-rate rule, including the choice of inflation target and a policy response to output,

and generalize to model versions that incorporate capital and investment spending, positive

trend inflation, incomplete asset markets, and dominant (or local) currency pricing.

Trade openness is also found to have contrasting effects on determinacy in the standard and

IADL economies, although this depends on both the degree of LAMP and inertia. While

trade openness typically induces indeterminacy in the standard case, the opposite holds

when the degree of LAMP is sufficiently high. We find that under price-level targeting,

closed IADL economies are more prone to indeterminacy than open IADL economies.

In an extension of Bilbiie (2008), Boerma (2014) and Buffie and Zanna (2018) show that

the inverted Taylor principle is less likely to hold in open economies because of the terms

of trade channel of monetary policy, which exerts contractionary pressure after a rise in

the real interest rate. In contrast, we find the benefits of openness in restoring the Taylor

principle are undermined by interest-rate inertia. The scope for active policy is limited due

to a lower bound on the inflation response coefficient, which becomes very large with even

a small amount of inertia. While a policy response to output can help for some degrees of

LAMP, this requires the central bank placing a large weight on output stabilization.

Following the analysis of the linear model, we also examine determinacy in the presence of

4See, e.g., Carlstrom and Fuerst (2002), Woodford (2003a, chap. 4), Vestin (2006), Gaspar et al. (2007),
Dib et al. (2013), Giannoni (2014), Bernanke (2017), and McKnight (2018). As Holden (2022) shows, these
benefits extend to a zero lower bound setting.

5Under such strategies policymakers seek to redress past deviations of inflation from its target. Assum-
ing a make-up rule enjoys credibility, undershooting (overshooting) the target will raise (lower) inflation
expectations, lower (raise) the real interest rate and help to stabilize the economy. Inertial Taylor rules
have by design the make-up feature as they commit to a response of the nominal interest rate to a weighted
average of past inflation with the weights increasing with the degree of interest-rate smoothing.
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a zero lower bound (ZLB). We show that policy inertia and trade openness both increase

indeterminacy under a ZLB, regardless of the degree of LAMP. Moreover, under a ZLB

the determinate region that arises under the Taylor principle in IADL economies is found

to be extremely unstable. Overall, we find that policy inertia is detrimental to achieving

determinacy under a ZLB in both standard and IADL economies, unless the policy rule

also responds to a lagged ‘shadow rate’.

1.2 Optimal Monetary Policy

Our second contribution is to extend the optimal monetary policy analysis of Bilbiie (2008)

to the open economy dimension with interest-rate inertia. We derive optimal monetary pol-

icy under an equitable allocation using government transfers.6 Similar to Woodford (2003a,

chap. 6); Giannoni and Woodford (2003) and Levine, McAdam and Pearlman (2008), we

allow for the costs of interest rate volatility to enter the loss function of the policymaker.

Under commitment, the implicit instrument rule is shown to be robustly optimal and

timeless. Optimal policy is found to be super-inertial for standard economies, whereas the

degree of inertia is significantly lower and not super-inertial for IADL economies. In both

cases, the optimal level of inertia depends on the degree of trade openness.

There are two policy trade-offs that welfare-maximizing policymakers face. The first is

between interest rate stability and the stability of domestic inflation and output. The

second is the standard trade-off between inflation and output stabilization. We find that

the penalty on interest rate variability only affects the degree of activeness of the optimal

rule and not the degree of inertia. In standard economies, the optimal inflation targeting

rule is shown to be super-inertial with positive coefficients for inflation and the output gap.

All policy coefficients are increasing under LAMP and decreasing with trade openness.

In contrast, the policy coefficients are negative for IADL economies and become more

strongly negative, as LAMP decreases and trade openness increases. For empirically-

plausible intervals of LAMP, the optimal degree of interest-rate smoothing is low, and can

be negative if the economy becomes sufficiently open.

Our analysis contributes to a small literature that characterizes optimal monetary policy

in the presence of financial-excluded households. For the closed economy, Bilbiie (2008)

shows that the optimal monetary policy under commitment is robustly optimal, where the

6In doing so, our normative analysis relates to empirical studies which find that consumption inequality
closely tracks income inequality (Aguiar and Bils, 2015).
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optimal response to inflation is decreasing in the share of LAMP. For open economies,

Iyer (2016) finds that when the degree of LAMP is high, the policymaker, in addition to

domestic inflation, should also stabilize the nominal exchange rate by putting more weight

on stabilizing output.7 We extend the analysis of both Bilbiie (2008) and Iyer (2016) by

deriving the optimal monetary policy for LAMP economies under interest-rate inertia.

1.3 Road-Map

The rest of the paper is structured as follows. Section 2 sets out the baseline SOE model

with LAMP. Section 3 considers the issue of equilibrium determinacy both in the absence

and presence of a ZLB. We also test the robustness of our results by relaxing several

assumptions of the baseline model, such as introducing capital and investment spending,

incomplete asset markets, positive trend inflation, and dominant currency pricing. Section

4 derives a welfare-theoretic social loss function focusing on the equitable allocation, before

analyzing optimal monetary policy under commitment with inertia. Finally, Section 5

concludes. Detailed derivations and proofs are provided in an online appendix.

2 A Small Open Economy Model with LAMP

This section presents our theoretical setup. It nests both the influential representative-

agent SOE framework of Gaĺı and Monacelli (2005) and the closed-economy LAMP model

of Bilbiie (2008). The economy is comprised of perfectly competitive wholesale firms that

produce a final good and monopolistically competitive retailers that sell intermediate trad-

able goods under Calvo (1983) price setting. There are two types of households in the

economy. In addition to standard Ricardian households, we include an exogenous fraction

of constrained households that do not have access to asset markets.

2.1 Households

Households are divided into two types. A fraction of households, λ ∈ (0, 1), participate

in domestic and international financial markets; these are referred to as Ricardian house-

holds and are denoted by superscript R. The remaining households 1 − λ, referred to as

7Lahiri et al. (2007) consider the implications of LAMP for the optimal exchange rate regime in a
flexible-price SOE.
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constrained households and denoted by superscript C, consume only out of wage income,

and have no assets or access to financial markets.

For both household types, i = {C,R}, single-period utility is assumed to be:

U it = U(Cit , N
i
t ) =

(
Cit
)1−σ

1− σ
−
(
N i
t

)1+ϕ

1 + ϕ
for σ 6= 1

= log
(
Cit
)
−
(
N i
t

)1+ϕ

1 + ϕ
; as σ → 1 (2.1)

where Cit is real consumption by household type i, σ is the coefficient of relative risk aversion

(CRRA), N i
t is labour supply of type i, and ϕ is the inverse of the Frisch elasticity.8

2.1.1 Ricardian Households

Ricardian households solve an intertemporal consumption problem:

max
CRt ,N

R
t

Et

[ ∞∑
s=0

βsU(CRt+s, N
R
t+s)

]
(2.2)

subject to a sequence of nominal budget constraints given by:

PBt BH,t + PBt
∗EtB∗F,t = BH,t−1 + EtB∗F,t−1 + PtWtN

R
t − PtCRt + Γt. (2.3)

BH,t and B∗F,t are domestic and foreign bonds, denominated in the respective currencies,

bought at the nominal price PBt = 1/Rt and PBt
∗

= 1/R∗t , where Rt and R∗t denote the

domestic and foreign nominal interest rate, respectively. Pt is the consumer price index

(CPI) and Et is the nominal exchange rate, measured as the domestic price of a unit

of foreign currency. Finally, Wt and Γt denote the real wage rate and nominal profits,

respectively.

Maximizing (2.2) subject to the budget constraint we obtain:

PBt = Et

[
ΛRt,t+1

Πt,t+1

]
, (2.4)

8If σ → 1 the functional form is consistent with a balanced growth path concept of the steady state.
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PBt
∗

= Et

[
ΛRt,t+1

Πt,t+1

Et+1

Et

]
, (2.5)

URN,t

URC,t
= −

(
CRt
)σ (

NR
t

)ϕ
= −Wt, (2.6)

where Πt,t+1 ≡ Pt+1

Pt
denotes the CPI inflation rate and ΛRt,t+1 ≡ β

URC,t+1

URC,t
is the stochastic

discount factor for Ricardian consumers.

2.1.2 Consumption Demand

Households demand consumption goods from domestic H and foreign F retailers (imports):

Ct =

[
w

1
µC
C C

µC−1

µC
H,t + (1− wC)

1
µC C

µC−1

µC
F,t

] µC
µC−1

. (2.7)

The weight wC in the consumption basket attached to domestic consumption demand is a

measure of home bias (where wC = 1 is the autarky case). Maximizing total consumption

(2.7) subject to a given aggregate expenditure PtCt = PH,tCH,t + PF,tCF,t yields:

CH,t = wC

(
PH,t
Pt

)−µC
Ct, (2.8)

CF,t = (1− wC)

(
PF,t
Pt

)−µC
Ct. (2.9)

Substituting these demand schedules into (2.7) gives the corresponding price index:

Pt =
[
wC(PH,t)

1−µC + (1− wC)(PF,t)
1−µC

] 1
1−µC , (2.10)

Foreign aggregate consumption C∗t is given by an exogenous process. The real exchange

rate is defined as the relative aggregate consumption price Qt ≡ P ∗
t Et
Pt

. Then the foreign

counterpart of the import demand schedule (2.9), which determines the export demand of

the home good, is

C∗H,t = (1− w∗C)

(
P ∗H,t
P ∗t

)−µ∗C
C∗t = (1− w∗C)

(
PH,t
PtQt

)−µ∗C
C∗t . (2.11)
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P ∗H,t and P ∗t denote the respective prices of home-produced (i.e., imported) consumption

goods and of aggregate consumption goods in the rest of the world (RoW) in foreign

currency, and we have used the law of one price for differentiated goods, EtP ∗H,t = PH,t.

We impose perfect exchange rate pass-through for imports and because the home country

is small, the law of one price implies that P ∗t = P ∗F,t, EtP ∗t = PF,t, so Qt =
PF,t
Pt

. We can

then write (2.11) as:

C∗H,t = (1− w∗C)

(
1

St

)−µ∗C
C∗t , (2.12)

where St ≡
PF,t
PH,t

are the terms of trade (ToT). Finally, total exports per capita is defined

as EXt ≡ C∗H,t.

2.1.3 Constrained Consumers

Constrained consumers have no income from monopolistically competitive retail firms and

must consume out of wage income. Their nominal consumption is given by:

PtC
C
t = PtWtN

C
t . (2.13)

Constrained consumers choose CCt and NC
t to maximize an analogous utility function to

(2.2) but subject to (2.13). The first order conditions can be written as:

UCN,t

UCC,t
= −

(
CCt
)σ (

NC
t

)ϕ
=
URN,t

URC,t
= −Wt, (2.14)

which has the same form as eq. (2.6) for the Ricardian consumers, but as we shall discuss

further below, CCt and NC
t are not the same as CRt and NR

t in general.

With both Ricardian and constrained households, aggregate consumption and hours sup-

plied are given by:

Ct = λCRt + (1− λ)CCt , (2.15)

Nt = λNR
t + (1− λ)NC

t . (2.16)
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2.2 Firms

There are wholesale and retail firms. The former act in perfect competition producing a

homogeneous final good, whereas the latter produce and sell differentiated intermediate

goods under monopolistic competition.

2.2.1 Wholesale Sector

Wholesale firms hire labour Nt to produce homogeneous output Y W
t using the standard

labour-augmenting constant returns to scale production technology:

Y W
t = F (Nt, At) = AtNt. (2.17)

Profit maximization implies:

PtWt =PWt FN,t = PWt
Y W
t

Nt
⇒ Wt = MCt

(
PH,t
Pt

)
Y W
t

Nt
, (2.18)

where MCt ≡ PWt
PH,t

is real marginal cost in units of domestic retail output.

2.2.2 Retail Sector

A retail firm m converts an amount of wholesale output Y W
t (m) into a differentiated good

of amount Yt(m) − F (m), where F (m) = F are fixed costs assumed to be equal across

retail firms. The retail differentiated goods are combined into the final good Yt using a

CES-aggregator production technology:

Yt ≡

 1∫
0

Yt (m)
ς−1
ς dm


ς
ς−1

. (2.19)

The CES technology implies demand schedules for each intermediate input j given by:

Yt (m) =

[
PH,t (m)

PH,t

]−ς
Yt. (2.20)

Following Calvo (1983), in every period each retail firm m faces a fixed probability 1 − ξ
of being able to optimally set their price to P 0

H,t(m). If the price is not re-optimized, then
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it is held fixed. The objective of a retail producer m at time t is to choose P 0
H,t(m) to

maximize discounted real profits:

Et
∞∑
k=0

ξk
Λt,t+k
Pt+k

Yt+k(m)
[
P 0
H,t(m)− PH,t+kMCt+k

]
(2.21)

subject to

Yt+k(m) =

(
P 0
H,t(m)

PH,t+k

)−ζ
Yt+k, (2.22)

where Λt,t+k ≡ βk
UC,t+k
UC,t

is the stochastic discount factor over the interval [t, t + k]. This

leads to the usual optimal price condition and aggregate law of motion for aggregate infla-

tion:

P 0
H,t

PH,t
=

ζ

(ζ − 1)

Et
∑∞

k=0 ξ
kΛt,t+k (Πt,t+k)

−1 (ΠH,t,t+k)
1+ζ Yt+kMCt+k

Et
∑∞

k=0 ξ
kΛt,t+k (Πt,t+k)

−1 (ΠH,t,t+k)
ζ Yt+k

, (2.23)

1 = ξ (ΠH,t−1,t)
ζ−1 + (1− ξ)

(
P 0
H,t

PH,t

)1−ζ

, (2.24)

where ΠH,t−1,t ≡
PH,t
PH,t−1

. The index m is dropped as all firms face the same marginal cost

so the right-hand side of (2.23) is independent of firm size or price history. Aggregate

output Yt is given by:

Yt =
AtNt − F

∆t
, (2.25)

where ∆t ≡
∫ 1

0

(
PH,t(m)
PH,t

)−ς
dm ≥ 1 is the degree of price dispersion of retail goods which

can be shown to follow the dynamic process:

∆t = ξΠζ
H,t−1,t∆t−1 + (1− ξ)

(
P 0
H,t

PH,t

)−ζ
. (2.26)

2.3 Output Market Clearing

Output market clearing for retail firm m is:

Yt(m) = CH,t(m) + C∗Ht(m).
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Aggregating yields the following resource constraint:

Yt = CH,t + C∗Ht = CH,t + EXt, (2.27)

and using the demand conditions (2.8) and (2.12) yields:

Yt = wC

(
PH,t
Pt

)−µC
Ct + (1− w∗C)

(
1

St

)−µ∗C
C∗t . (2.28)

2.4 Monetary Policy

The nominal interest rate Rt is a policy variable given by the following explicit instrument

(Taylor-type) rule:9

log

(
Rt
R

)
= ρr log

(
Rt−1

R

)
+ Et

[
θπ log

(
Πt,t+1

Π

)
+ θy log

(
Yt
Y

)]
, (2.29)

where ρr, θπ, θy ≥ 0. We focus on forward-looking rules as many central banks target

forecasted inflation in practice due to the observed time delay in the transmission mecha-

nism of monetary policy.10 In Section 4, we consider optimal targeting rules (i.e., implicit

instrument rules) under commitment.

2.5 Foreign Bond Accumulation

In nominal terms and measured in the home country currency, foreign bond holdings evolve

according to:

PBt
∗EtB∗F,t = EtB∗F,t−1 + PtTBt,

where the nominal trade balance PtTBt = PH,tYt−PtCt is the difference between domestic

output and private consumption. Defining BF,t ≡
EtB∗

F,t

Pt
to be the stock of foreign bonds

in home country consumption units, it follows that

PBt
∗
BF,t =

ΠEt−1,t

Πt−1,t
BF,t−1 + TBt, (2.30)

9This is in ‘implementable’ form as proposed by Schmitt-Grohe and Uribe (2007). The conventional
Taylor rule replaces the output level relative to its steady state Yt

Y
with the output gap Yt

Y n
t

where Y nt is

the natural rate, i.e., the level of output that would have prevailed if all prices were perfectly flexible.
10For further discussion, see Batini and Haldane (1999) and McKnight and Mihailov (2015).
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where ΠEt−1,t ≡ Et
Et−1

is the (gross) nominal depreciation of the SOE currency.

2.6 Equilibrium

An equilibrium is defined in the model variables given the conditions outlined above to-

gether with the interest rate rule (2.29) and three structural exogenous shock processes At,

C∗t and R∗t , which are assumed to follow stochastic AR(1) processes. Appendix A of the

online appendix provides a summary of this equilibrium.

2.7 Symmetric Equilibrium of Small Open Economies with Risk Sharing

Up to now we have modelled the SOE in an environment consisting of the RoW, which

from its own viewpoint is closed. For later use when we come to optimal policy, we now

amend the environment to consist of a continuum of i ∈ [0, 1] identical open economies of

which the ‘home’ economy is just one. We assume there is international risk-sharing in

this version of the model so the risk premium is zero. The first-order conditions (2.4) and

(2.5) lead to the standard risk-sharing condition:

CRt = (CRt )iQ
1
σ
i,t (2.31)

where Qi,t ≡ Ei,tP
i
t

Pt
is the home country (or SOE) vis-à-vis country (or SOE) i bilateral real

exchange rate, with Ei,t now the corresponding bilateral nominal exchange rate between

these two countries (both identical SOEs). Naturally, the risk-sharing only applies to

Ricardian and not constrained households.

Then using (2.8) and (2.12), in a symmetric equilibrium with Ct = C∗t ,11 µC = µ∗C , λi = λ,

σ = σ∗ and Qt =
EtP ∗

t
Pt

we have

Yt = Y ∗t = CH,t + C∗H,t

= Ct

(
PH,t
Pt

)−µC (
wC + (1− wC)Q

µC− 1
σ

t

)
(2.32)

11Note that all macroeconomic quantities are in per capita form.
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3 Stability and Determinacy Analysis

The model is linearized around a non-stochastic steady state where net inflation is zero,

i.e., Π = 1, and prices P = PH = PF = P ∗ = 1. Then by definition the steady state terms

of trade and real exchange rate are ε = Q = 1. For the LAMP aspects of the model, we

follow Bilbiie (2008) and impose an equitable outcome CR = CC and NR = NC , which

can be achieved by assuming that free entry drives profits to zero in an equilibrium in the

steady state with F
Y = (1−MC) = 1

ζ .12 Since the focus of this section is on (local) stability

and equilibrium determinacy, we consider the deterministic perfect foresight case with all

shocks set equal to zero. In what follows, all lower-case variables in this section denote

percentage deviations from the steady state.

We can describe the non-policy aspects of the model using a New Keynesian Phillips

Curve (NKPC) and an intertemporal IS curve, both expressed in terms of consumption by

Ricardian consumers:13

πH,t = βπH,t+1 + ΨΥcRt , (3.1)

cRt = cRt+1 −
wC
σ

(rt − πH,t+1) , (3.2)

yt = ΞcRt , (3.3)

where the parameters are defined as:

Υ ≡ σ(1− wC)

wC
+

λ(ϕ+ σ)
[
wCϕ+ σ

(
1 + 1

ζ

)]
+ ϕ(1− wC)(ϕ+ σ)

[
1 + ωσ

wC

]
λ(ϕ+ σ)

(
1 + 1

ζ

)
− (1− λ)ϕ

[
wC(1 + ϕ) + (σ − 1)

(
1 + 1

ζ

)] , (3.4)

Ξ ≡ wCλ+ (1− wC)

[
1 +

ωσ

wC

]
+ wC(1− λ)

1 + ϕ

ϕ+ σ

(
Υ− σ

wC
+ σ

)
, (3.5)

Ψ ≡ (1−ξ)(1−βξ)
ξ > 0, and ω ≡ wC(µC − 1/σ) + µ∗C = µC(1 +wC)−wC/σ > 0, if µC = µ∗C .

The threshold for the proportion of Ricardian households λ below which the inverted

12As we discuss later in the paper, alternatively a subsidy scheme for the optimal equitable allocation in
Proposition 5 in Section 4.2 can support this outcome.

13Alternative NKPC and IS expressions, written in terms of total consumption in deviations from baseline
allocations, and hence in standard output gap terms, are discussed in Section 4.
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aggregate demand logic (IADL) occurs is the point at which Υ changes sign. From (3.4)

this is given by:

λ = λ∗ =
ϕ
[
wC(1 + ϕ) + (σ − 1)

(
1 + 1

ζ

)]
ϕ
[
wC(1 + ϕ) + (σ − 1)

(
1 + 1

ζ

)]
+ (ϕ+ σ)

(
1 + 1

ζ

) . (3.6)

Then replacing λ∗ = λ∗(wC) we have the following result:

Proposition 1. (IADL threshold) The threshold below which IADL occurs, λ∗ = λ∗(wC),

increases with wC and therefore decreases with trade openness 1− wC .

Proof: See appendix C.3.

Consequently, trade openness decreases the possibility of IADL.14 To understand the IADL,

notice that we can write Ricardian labour supply as: nRt = 1
ϕ

(
Υ− σ

wC

)
cRt , which implies

that hours fall in consumption for Ricardian households provided Υ < σ
wC

. When asset

market participation is sufficiently low, the profit channel dominates the wage effect, and

increases in the real interest rate rt − πt+1 = wC (rt − πH,t+1) can have an expansionary

effect on output yt. For example, in the closed economy (wC = 1) it follows from (3.5)

that ΞwC=1 = Υ(1+1/ζ)
ϕ+σ(1+1/ζ) < 0 under IADL. From (3.2) and (3.3), a rise in the real interest

rate increases output by reducing Ricardian consumption cRt , exerting upward pressure

on inflation from the NKPC. This contrasts with the standard aggregate demand logic

(SADL) where both output and consumption respond negatively to real interest rate rises.

In open economies, it follows from (3.4) and (3.5) that Ξ > 0 when Υ > 0, so that cRt always

increases in yt under SADL. However, under IADL, cRt can either increase or decrease in

yt depending on the degree of LAMP.

The parameter Υ is a function of λ and the other model parameters wC , ϕ, σ, and ω, but

is independent of the monetary policy rule. For this, we initially assume the policymaker

follows a simple inertial rule of the form:

rt = ρrrt−1 + θππt+1, (3.7)

where ρr ≥ 0 is the degree of interest rate inertia and θπ ≥ 0 is the inflation response

14This result is consistent with the findings of Boerma (2014). Buffie and Zanna (2018) find trade
openness can reduce the threshold value λ∗ close to zero in an imperfect capital mobility model with
multiple sticky-price and flexible-price sectors.
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coefficient. Note that the central bank adopts a super-inertial policy if ρr ≥ 1, and the

integral rule with ρr = 1 yields a price-level (Wicksellian) rule. The interest-rate rule (3.7)

can be expressed as:

rt = ρrrt−1 −
σ(1− wC)θπ

wC
cRt +

σ(1− wC)θπ
wC

cRt+1 + θππH,t+1. (3.8)

Equations (3.1), (3.2) and (3.8) imply the minimal state-space representation of the model:

zt+1 = Azt, zt =
[
cRt πH,t rt−1

]′
. (3.9)

where the coefficient matrix A is given in appendix C.1.

3.1 Determinacy Analysis

We start by examining the stability properties of the model for the policy rule (3.7).

Proposition 2.

(a) (Role of interest-rate inertia) For the standard SADL case λ > λ∗, interest rate

inertia increases the policy space for θπ for which there is determinacy. An equilibrium

exists for all λ ∈ (λ∗, 1] with an appropriate choice of θπ. Under IADL, there exists

some value of λ ∈ [0, λ∗) for which a unique stable equilibrium exists. Interest rate

inertia in this case reduces the policy space for θπ, and for some values λ ∈ [0, λ∗) if

−2σ(1 + β)

ΨwC
< Υ < −2σ(1 + β)(1− wC)

ΨwC

then a unique stable equilibrium does not exist for θπ > 0.

(b) (Role of trade openness) For the standard SADL case λ > λ∗, trade openness

1−wC decreases the policy space for θπ for which there is determinacy. Under IADL,

the determinate policy space for θπ increases with 1−wC for some values λ ∈ [0, λ∗) if

−2σ(1 + β)(1− wC)

ΨwC
< Υ < 0.

Proof: See appendix C.4.

The results given in propositions 2 follow from the necessary and sufficient conditions for
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equilibrium determinacy outlined in the online appendix. In the absence of interest rate

inertia (ρr = 0), the Taylor principle (θπ > 1), which implies an ‘active’ policy feedback

to future inflation, is a necessary condition for determinacy in the SADL case (Υ > 0).

In contrast, for the IADL case (Υ < 0) a ‘passive’ policy stance (θπ < 1), or the inverted

Taylor principle, is consistent with determinacy for closed economies. The determinacy

conditions indicate that increasing interest rate inertia increases the range of determinacy

under SADL, while it reduces the determinate policy space under IADL. Trade openness

has contrasting effects. By reducing an upper bound on the inflation response coefficient,

denoted Γ1, the determinacy region shrinks in open SADL economies. However, the region

of determinacy can actually increase under IADL, as the economy becomes more open.

For sufficiently low values of λ, determinacy arises under the Taylor principle provided the

inflation response coefficient is set sufficiently high θπ > max
{

1
1−wC ,Γ1

}
.

The above results are illustrated in Figure 2 for a standard quarterly parameterization. We

set the discount factor β = 0.99, the CRRA coefficient σ = 2, ζ = 7, implying a markup

of 16 percent, and the real marginal cost elasticity of inflation Ψ = 0.086, consistent with

an average price duration of one year. The open economy parameters are set with home

bias wC = 0.6 and an elasticity of substitution µC = 0.62 in line with the estimates of

Boehm et al. (2019). By inspection, while policy inertia has a stabilizing effect on the

SADL economy, trade openness has a destabilizing effect. Under IADL, determinacy can

also arise under the Taylor principle, as openness exerts a stabilizing effect, whereas policy

inertia now destabilizes the IADL economy.

Under super-inertial policy (ρr ≥ 1), determinacy is easily achieved in the SADL case.

For instance, consider the closed-economy version of the model (wC = 1) with price-level

targeting (ρr = 1). The necessary and sufficient condition for determinacy is given by

0 < θπ < 2 + 4σ(1+β)
ΨΥ , where the upper bound is non-binding within the empirically-

relevant interval θπ ∈ [0, 10], except for λ very close to the threshold λ∗.15 In contrast,

determinacy is only possible under IADL if

(
1−

[
1 + 2σ(1+β)

Ψ
1+ϕ
σ+ϕ

]−1
)
λ∗ < λ < λ∗. For

the baseline parameter values, there exists a very small interval of λ for which determinacy

is possible (0.986λ∗ < λ < λ∗). As highlighted in Figure 2, the determinacy region is barely

visible under a price-level rule (and super-inertial policy in general) for both closed and

open IADL economies. This is in stark contrast to the case of no rule-of-thumb consumers

15With our baseline parameter values, the upper bound on θπ lies in the interval [2, 10] for λ ∈
[0.644, 0.684].
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Figure 2: Determinacy regions (white areas) for the baseline LAMP model. Parameter values are
Ψ = 0.086, ϕ = σ = 2, β = 0.99, ζ = 7, and µC = 0.62, wC = 0.6 for the open economy (top panel)
and wC = 1 for the closed (bottom panel). The red vertical line gives λ∗ below which IADL holds.

(λ = 1), where determinacy is easily induced.16

For some intuition, first consider a sunspot-induced increase in inflationary expectations in

a closed economy. For the SADL case, the Taylor principle induces a rise in the real interest

rate, resulting in a fall in consumption and output. This exerts downward pressure on real

marginal cost, which lowers inflation from the NKPC, contradicting the initial inflationary

expectations. Similar to Bullard and Mitra (2007), interest-rate inertia helps to enlarge the

determinacy region, as the long-run nominal interest-rate is 1/1−ρr times more responsive

to permanent changes in inflation compared to the non-inertial case. Under super-inertial

rules, any increase in inflation results in a rise in both the nominal and real interest rate.

For any θπ > 0, the Taylor principle is always satisfied and indeterminacy is not possible.

In IADL economies, Ricardian consumption falls but output rises in response to a higher

real interest rate. Consequently, real marginal cost increases and the initial inflationary

belief becomes self-fulfilling under the Taylor principle. In this case, a passive policy re-

16For example, there exists a unique stable equilibrium in the closed economy after setting λ = 1 iff

0 < θπ < 2
[
1 + 2σ(1+β)

Ψ(σ+ϕ)

]
.
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sponse by letting the real interest fall in response to higher expected inflation, leads to

lower demand and deflation from the NKPC, contradicting the initial inflationary expec-

tations. However, interest rate inertia reduces the determinacy region under the inverted

Taylor principle, and determinacy becomes nearly impossible under super-inertial rules.

In open economies, the next-period consumer-price inflation rate depends on both the rate

of future domestic price inflation and changes in the terms of trade:

πt+1 = πH,t+1 + (1− wC) (st+1 − st) = πH,t+1 + σ

(
1− wC
wC

)(
cRt+1 − cRt

)
.

For the SADL case, a real interest rate rise results in an expected deterioration in the terms

of trade st+1 − st > 0. Consequently, indeterminacy can arise under the Taylor principle

provided the upward pressure on consumer-price inflation, generated by the adjustments in

the terms of trade, is sufficiently strong to offset the reduction in domestic-price inflation

generated from lower domestic demand. As the degree of trade openness 1−wC increases,

the economy becomes more prone to indeterminacy. However, in stark contrast to closed

economies, determinacy can be consistent with the Taylor principle under IADL. While rises

in the real interest rate now result in an increase in domestic-price inflation, the upward

pressure exerted on consumer-price inflation can be more than offset via a reduction in

Ricardian consumption (cRt+1 − cRt < 0) arising from the adjustment in the terms of trade.

Below we examine the robustness of these findings using several variants of the policy rule

(3.8) commonly found in the literature.

3.2 Domestic-Price Inflation Targeting

We now consider the determinacy implications of rule-of-thumb consumers under a domes-

tic price inflation rule with policy inertia:

rt = ρrrt−1 + θππH,t+1, (3.10)

where setting ρr = 1 yields a domestic-price-level rule.

Proposition 3. (Domestic-price inflation) For the standard SADL case λ > λ∗, in-

terest rate inertia increases the policy space for θπ for which there is determinacy. Under

IADL, interest rate inertia decreases the determinate policy space for θπ. The effect of
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trade openness is ambiguous. However, for a standard range of parameter values, trade

openness enlarges the determinate policy space under SADL and reduces it under IADL.

Proof: See appendix C.5.

Under a domestic-price inflation rule, the role of trade openness can be reversed. For

the SADL case, the upper bound on the inflation response coefficient is now given by

θπ < (1 + ρr)
[
1 + 2σ(1+β)

ΨwCΥ

]
≡ ΓPPI1 , which can either increase or decrease with trade

openness 1 − wC depending on the value of λ > λ∗.17 For the IADL case, the large

determinacy region that arises under the Taylor principle in open economies is no longer

available if domestic-price inflation is targeted.18

Interest-rate inertia has similar implications for determinacy regardless of the choice of

inflation target. For example, consider a domestic price-level rule by setting ρr = 1 in

(3.10). The necessary and sufficient condition for equilibrium determinacy is given by

0 < θπ < 2 + 4σ(1+β)
ΨwCΥ . Therefore, determinacy is impossible in IADL economies provided

−2σ(1 + β)/ΨwC < Υ < 0, which using the baseline parameter values suggests λ < 0.63

for a closed economy and λ < 0.55 with wC = 0.6. In both cases, this threshold is a

value approximately 0.01 below λ∗, emphasizing the narrowness of the region for which

determinacy is possible.19

3.3 Output Stabilization

We now consider the determinacy implications of a policy response to contemporaneous

output (or the output gap). Since yt is linear in cRt , the Taylor rule can be expressed as:

rt = ρrrt−1 + θππt+1 + θyΞc
R
t , (3.11)

where θy ≥ 0 is the output response coefficient and Ξ is given by (3.5).

Proposition 4. (Output targeting) For the standard SADL case λ > λ∗, a policy re-

sponse to output θy > 0 increases the policy space of θπ for which there is determinacy.

Under IADL, there exists some values of λ ∈ [0, λ∗) for which the Taylor principle is re-

17Close to the IADL threshold, λ∗, the upper-bound ΓPPI1 is decreasing with 1− wC and in the case of
no rule-of-thumb consumers (λ = 1), it is increasing with 1− wC provided 1− σµC > 0.

18Plots of the determinacy regions are shown in Figure 11 in appendix C.5.
19As shown in appendix C.7, similar conclusions are obtained under a contemporaneous-looking interest-

rate rule: rt = ρrrt−1 + θππt.
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stored. However, in this case, the equilibrium is indeterminate regardless of the value of

θπ if θy < θy, where θy is increasing with interest rate inertia and decreasing with trade

openness.

Proof: See appendix C.6.
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Figure 3: Determinacy regions (white areas) under IADL for the baseline LAMP model. Parameter
values are λ = 0.5, Ψ = 0.086, ϕ = σ = 2, β = 0.99, ζ = 7, and µC = 0.62, wC = 0.6 for the open
economy (top panel) and wC = 1 for the closed economy (bottom panel).

Under SADL, both closed and open economies are less prone to indeterminacy with a

policy response to output. Since Ξ > 0 with Υ > 0, it follows that the slope (1−β)Ξ
ΨΥ of the

long-run NKPC is positive and the generalized (or long-run) version of the Taylor principle

is given by:

θπ +
(1− β)Ξ

ΨΥ
θy > 1− ρr. (3.12)

Increasing ρr results in a parallel inward shift of the long-run Taylor principle on the plane

(yt, πt), and the upper bound Γy1 on the inflation response coefficient is increasing in θy:

Γy1 ≡ (1 + ρr)

[
1 +

2(1 + β)σwC
ΨwCΥ + 2σ(1 + β)(1− wC)

]
+

wC(1 + β)Ξ

ΨwCΥ + 2σ(1 + β)(1− wC)
θy.
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Figure 4: Determinacy regions (white areas) under IADL for the baseline LAMP model. Parameter
values are λ = 0.2, 0.5, ρ = 0, Ψ = 0.086, ϕ = σ = 2, β = 0.99, ζ = 7, µC = 0.62, and wC = 0.6.

With a policy response to output, the IADL breaks down in closed economies. Since

Ξ < 0 with Υ < 0 (after setting wC = 1), determinacy can only arise under the inverted

Taylor principle when θy = 0. Instead, determinacy requires the central bank to follow

the generalized Taylor principle (3.12) and place a sufficiently large weight on output:

θy >
(
θπ−1−ρr

1+β

)
ΨΥ
Ξ −

2σ(1+ρr)
Ξ . However, as illustrated in Figure 3(b), determinacy requires

θy to be large suggesting that indeterminacy is likely to arise in a closed economy when

Υ < 0 for empirically realistic output responses θy ∈ [0, 2]. Moreover, since the lower

bound on θy is increasing in ρr, policy inertia further undermines the ability of a policy

response to output to help restore the Taylor principle when λ < λ∗.

In open economies Ξ can be positive or negative under Υ < 0. This switch is clearly

shown in Figure 4 by setting λ = 0.2, 0.5, since Ξ > 0 for any λ < 0.3 under the baseline

parameter values. Thus, for low levels of λ, the IADL is maintained and determinacy arises

under the inverted Taylor principle. Figure 3(a) highlights the role of trade openness and

policy inertia under Υ < 0 when Ξ < 0. By inspection, openness not only improves the

determinacy properties of the IADL economy by lowering λ∗, but for the case λ < λ∗, the

determinate policy space is also much larger in the open economy.

3.4 Exchange Rate Stabilization

We can show the results are also robust to a modified interest-rate rule that incorporates a

policy response to either the real exchange rate qt or changes in the nominal exchange rate

ΠEt−1,t. Because the UIP condition holds, the exchange rate depreciation is equal to the

lagged interest rate. Choosing the weight on this term is therefore equivalent to choosing

ρr, leaving the results unchanged. For the real exchange rate, it is straightforward to

show that under complete asset markets qt = σ
(
cRt − c

R,∗
t

)
. It follows directly that the
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determinacy conditions are equivalent to those with a policy response to output.

3.5 Incomplete Asset Markets, Trend Inflation, Capital and Dominant

Currency Pricing

We now explore the robustness of our results for the inertial feedback rule (3.7) by in-

troducing incomplete asset markets, positive trend inflation, and capital into the baseline

model. The key differences are as follows. Under incomplete asset markets, the risk-sharing

condition (4.2) is replaced by:

Et

[
ΛRt,t+1

Πt,t+1

]
Rt = R∗tφB

(EtB∗F,t
PH,tYt

)
Et

[
ΛRt,t+1

Πt,t+1
ΠEt,t+1

]
, (3.13)

where φB > 0 controls the risk premium on foreign bonds. Wholesale firms use capital and

labour to produce output under a constant-returns-to-scale technology. We assume that

the law of motion for the capital stock is given by:

Kt = (1− δK)Kt−1 + [1− S(Xt)] It, (3.14)

where 0 < δk < 1 and S(Xt) represents an adjustment cost to investment. In the steady

state it is assumed that the trend inflation rate is positive, Π ≥ 1. Since analytical results

are not possible, we run numerical computations of local stability and determinacy.20

We find that the results from the determinacy analysis are not dependent on the interna-

tional risk-sharing assumption and this is robust across a large range of values of φB. Figure

5 shows the determinacy regions in the model with both incomplete asset markets and an

annualized trend inflation rate of 4 percent. Under IADL, the determinacy region for open

economies is found to be increasing in Π, where trend inflation expands significantly the

determinacy region under the Taylor principle for all values of ρr. This is in stark contrast

to the closed IADL economy, where trend inflation has little effect on determinacy.21

Similar conclusions are also obtained with the inclusion of capital and investment spending.

20Appendix B of the online appendix summarizes the complete set of equilibrium conditions for this
model version. Numerical simulations use the parameter values summarized in Table 2 of appendix B.7.
Additional results are provided in appendix C.8. Dynare was used to compute the results.

21For the standard SADL case, determinacy is not possible under trend inflation in the absence of
policy inertia for both closed and open economies. However, as the value of ρr increases, the determinacy
implications of trend inflation become minimal.
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Figure 5: Determinacy regions (white areas) for the LAMP model with incomplete asset markets
and 4% trend inflation. Parameterization is given in Table 2 of appendix B.7.

For the IADL case, determinacy requires the inverted Taylor principle in the closed econ-

omy, which shrinks as ρr increases and completely disappears under super-inertial rules

(ρr ≥ 1). This is in stark contrast to the case of no rule-of-thumb consumers, where it

is well known that by increasing the degree of interest rate inertia (see, e.g., Duffy and

Xiao, 2011) or adopting a Wicksellian rule (see, e.g., McKnight, 2018) leads to significant

determinacy gains in New Keynesian (NK) models with capital. Similar to the baseline

(labour-only) model, the Taylor principle can achieve determinacy in open IADL economies

provided λ is sufficiently small and θπ is sufficiently greater than 1.

As a final sensitivity analysis we explore the determinacy implications when exports of the

small open economy are priced in a dominant or local currency. In this model version,

there are two retail sectors, domestic and export, where the export retail sector sets prices

in the foreign currency. Details of this model version are given in the online appendix B.6.

The numerical results, which we present in appendix C.9, suggest that the role of λ and

ρr remain unchanged under dominant currency pricing. Similar to the producer-currency-

pricing baseline, these findings are also robust to the inclusion of incomplete asset markets

and/or capital and investment spending.
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3.6 Indeterminacy at the Zero Lower Bound

We now suppose that the interest rate is subject to a zero lower bound (ZLB) such that:

rt + r̄ = max {0, r̄ + ρrrt−1 + θππt+1} . (3.15)

The presence of a ZLB can alter the determinacy properties of the model and introduces

the possibility of both dynamic and steady-state indeterminacy.22 Consider the following

intuition for a sunspot shock induced by the ZLB. The expectation that the ZLB will bind

in the future is equivalent to the expectation that for some period the nominal interest rate

will be elevated above the level otherwise set by the policy rule. The higher future interest

rate will have a deflationary effect and induce a cut in the interest rate today. If either the

deflation is severe enough or the response of current monetary policy strong enough, then

the interest rate can reach zero, and the ZLB episode would be self-fulfilling.

In order to test for equilibrium determinacy at time t, we start by choosing a future horizon

t+ T at which point the agents believe the economy will be away from the ZLB. We then

use the tests discussed in Holden (2022) to check the necessary and sufficient conditions for

equilibrium determinacy for different horizons, T . If a sunspot-induced ZLB equilibrium is

possible at t even if agents expect to be away from the ZLB in the following period, then

the economy always suffers from indeterminacy irrespective of beliefs about the future. We

might be able to rule out sunspot equilibria at t if agents believe the economy will be away

from the ZLB by t + T , but this is not sufficient proof that there can never be sunspot

equilibria. However, in principle, we could choose a value for T large enough that the risk

of the ZLB binding at this future point should not plausibly affect current inflation.23

While a full check of all the necessary and sufficient conditions is too computationally

expensive for large values of T , we can check some sufficient conditions with a horizon

T = 200, which is equivalent to agents expecting to have escaped the ZLB within 50

years. This exercise reveals that when a determinate policy rule is available under IADL,

22It is easily verified that two deterministic steady states exist in the standard NK model with a ZLB;
one steady state exists when the nominal interest rate is at zero and inflation is below target, and a second
steady state arises under a positive interest rate and inflation on target. See Benhabib and Uribe (2002)
and Fernández-Villaverde et al. (2015) for a detailed analysis of dynamic indeterminacy under a ZLB.

23A detailed discussion of the tests is provided in the online appendix. For further reading, see Holden
(2022) who outlines the necessary and sufficient conditions for determinacy in an otherwise linear model
with a ZLB.
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(a) Open economy

(b) Closed economy

Figure 6: Uniqueness results for the baseline LAMP model with a ZLB. The black areas represent
indeterminacy in the linear model, the white areas indicate there is always a unique equilibrium
conditional on agents expecting to be away from the ZLB in 20 quarters. Uniqueness can only be
guaranteed in the red areas when the economy escapes the ZLB in the following period. In the blue
areas, self-fulfilling ZLB episodes are always possible. Parameterization is the same as in Figure 2.

uniqueness is always guaranteed except for high values of θπ > max
{

1
1−wC ,Γ1

}
. However,

we cannot rule out multiplicity under SADL except in the absence of interest rate inertia.24

Restricting our analysis to a shorter horizon T = 20, implying agents expect the economy

to have escaped the ZLB in 5 years, allows us to check the full set of necessary and sufficient

conditions by employing the recursive test proposed in Tsatsomeros and Li (2000).25

Figure 6 shows the results of these tests. For open IADL economies, the blue region arising

from a sufficiently large inflation response θπ suffers from the risk of equilibrium multi-

plicity. Here, the nominal interest rate responds negatively to a positive contemporaneous

monetary policy shock and self-fulfilling ZLB episodes are always possible due to the ag-

24It turns out that uniqueness under SADL with no policy inertia is a knife-edge result that does not
hold in the medium-scale model.

25We rely on the implementation of these tests in the dynareOBC toolkit (see https://github.com/

tholden/dynareOBC) as described in Holden (2022).
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gressiveness of the policy rule. The red area shows the region in the parameter space for

which indeterminacy arises from the ZLB in open SADL economies. Although not quite

as unstable as the blue region of the IADL economy, multiple equilibria arises unless the

economy is expected to be away from the ZLB in the following period. Consequently,

the determinate policy space shrinks in open SADL economies with policy inertia, where

multiple equilibria can occur as a result of future news of the ZLB binding.

This might seem to contradict that existing literature which finds that price-level targeting

and other make-up strategies can prevent sunspot equilibria, but notice that the lag of the

interest rate in (3.15) will be zero when at the ZLB. Any price-level information stored is

therefore lost when the ZLB is binding. We can retain this either with a defined price-level

target or if we include a shadow interest rate r∗t in the interest rate rule:

rt + r̄ = max {0, r∗t + r̄}

r∗t = ρrr
∗
t−1 + θππt+1.

(3.16)

Under this policy rule, determinacy is restored to the red regions highlighted in Figure 6.

This highlights that policy inertia is not enough to guard against ZLB risk.

We can look further at how policy inertia and trade openness affect the determinacy prop-

erties of the model under a ZLB using other indicative statistics. For the interest-rate rule

(3.15), except for small values of ρr, we find that higher policy inertia worsens the deter-

minacy properties of both the closed and open economy versions of the model. However,

by including the lagged shadow rate (3.16), policy inertia tends to improve the determi-

nacy conditions.26 Consider the following intuition. As already discussed, the presence of

self-fulfilling ZLB episodes depends on the current impact of future monetary policy news

shocks. Policy inertia can have two competing effects in this regard. On one hand, policy

inertia increases the persistence of monetary policy shocks, implying that the ZLB binding

is more contractionary in the presence of inertia, increasing the risk of sunspots. On the

other hand, under inertia, a change in the interest rate will move long-term interest rates,

thus having a larger impact on current inflation through the expectation channel. In the

case of a shadow rate rule, the higher inflation expectations under policy inertia offsets the

contractionary effect of news of future ZLB episodes.

26See appendix C.10.1 for details.

Page 27 of 44



4 Optimal Monetary Policy

This section considers optimal policy using a (slightly) restricted form of the model for

reasons of analytical tractability. The optimal policy problem is defined in Section 4.3. We

confine ourselves to the case where the policymaker can commit (as for the Taylor-type

rules examined above). As is standard in the literature, in order to derive analytical results,

we define an approximate linear-quadratic optimal policy problem. Section 4.4 sets out

the commitment solution where the policymaker is concerned about interest rate variance.

We follow Gaĺı and Monacelli (2005), among others, and restrict the welfare analysis to

the special case where σ = µC = µ∗C = 1.

Assumption 1. (Restricted parametrization) We hereafter assume: (i) log utility in

consumption (σ = 1); (ii) unit elasticity of substitution between home and foreign goods

(µC = 1); (iii) unit elasticity of substitution between goods produced in the RoW (µ∗C = 1);

(iv) no fixed costs (F = 0) so without subsidies, the steady state is not equitable.

In our model there are three market distortions. In addition to market power arising from

monopolistic competition and relative price dispersion arising from nominal price stickiness,

the terms of trade can be influenced to the benefit of domestic consumers. Moreover,

with LAMP, there is an additional behavioral distortion which creates inequality across

household types.27

4.1 The Symmetric Equilibrium with the Restricted Parametrization

With the restricted parametrization of Assumption 1 the CPI index, risk sharing and

output equilibrium conditions respectively become

Pt = PwC
H,t P

1−wC
F,t (4.1)

CRt = CRt
∗
Qt (4.2)

Yt = Ct

(
PH,t
Pt

)−µC
(4.3)

where we recall the real exchange rate Qt ≡ EP ∗
t

Pt
=

PF,t
Pt

(assuming producer currency

pricing) and the terms of trade St =
PF,t
PH,t

. Hence from (4.1), Qt = SwC
t so (4.2) and (4.3)

27This distortion arises from three sources preventing constrained households from (i) owning domestic
shares, (ii) owning foreign shares, and (iii) trading in international state-contingent securities.
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combine to give

CwC
t (CRt )1−wC = (CRt

∗
)1−wCY wC

t (4.4)

4.2 The Social Planner’s Equitable Allocation Problem

The social planner’s problem for the SOE with LAMP is to choose Cit and N i
t for i = C,R

to maximize aggregate utility λU(CRt , N
R
t ) + (1 − λ)U(CCt , N

C
t ) subject to the resource

constraint. We seek an equitable allocation that removes the LAMP distortion to give

constrained consumers the benefit of risk-sharing. Then the optimal equitable allocation

with Ct = CRt = CCt and Nt = NR
t = NC

t follows from optimizing the same aggregate

utility function but subject to the risk-sharing and output equilibrium constraint given

by (4.4) and the technology constraint Yt = AtNt
∆t

. In the optimal allocation prices are

flexible so the price dispersion ∆t = 1. In terms of Ct and Nt and given CRt
∗

the relevant

constraint becomes

Ct = (AtNt)
wC (CRt

∗
)1−wC . (4.5)

The first-order condition then is given by

UN,t + UC,tC
R ∗
t AwC

t wCN
wC−1
t = 0 (4.6)

With our choice of preferences (2.1) (with σ = 1), UN,t = Nϕ
t and UC = 1

Ct
. Then

combining (4.5) and (4.6) we arrive at

Nt = N = w
1

1+ϕ

C (4.7)

Thus the socially optimal labour supply is constant. The deterministic steady state of

this equilibrium is the baseline about which the first-order solution of the model and the

second-order approximation of the welfare criterion are conducted, in accordance with the

equilibrium determinacy analysis of section 3.

How then can the decentralized equilibrium sticky-price SOE with LAMP support this

optimal equitable allocation in our baseline steady state? We seek two tax instruments, a

firm subsidy τf that eliminates the sticky-price distortion and a household subsidy τh that

eliminates the LAMP distortion. Both are financed out of lump-sum taxation of Ricardian
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consumers. These payments must then satisfy

W (1− τf ) = −UN i

UCi
; i = R,C, (4.8)

CC = W (1 + τh)NC . (4.9)

From the sticky-price decentralized equilibrium this requires tax subsidies that satisfy:

wC(1− τf ) = 1− 1

ζ
, (4.10)

1 + τh =
1

wC
. (4.11)

Thus the next proposition directly follows.

Proposition 5. (Subsidies for an Optimal Equitable Allocation) Given the sticky-

price LAMP equilibrium, in our baseline steady state an optimal equitable flexi-price allo-

cation is sustained following (4.10) and (4.11) which determine tax subsidies for the firm

τf and household τh. These subsidies are financed by lump-sum taxes, introduced in the

budget constraint for Ricardian households (2.3).

Note that the LAMP dimension, via λ, does not appear in either (4.10) and (4.11). The

optimal employment subsidy paid to the firm is influenced (negatively) by the degree of

trade openness, 1 − wC , in addition to its standard (positive) dependence on the inverse

of the markup, 1 − 1/ζ. In contrast, the optimal wage subsidy paid to all households

is positively related to the degree of trade openness. These results generalize the results

of Bilbiie (2008) for the closed LAMP economy (wC = 1), where no household subsidy is

required, and Gaĺı and Monacelli (2005) for the open economy case without LAMP (λ = 1).

4.2.1 Discussion

A result we have established here is that the optimal equitable hours of work (4.6) depend

on the degree of trade openness: the more open is the economy, the less R and C agents

work. This result arises because of the same risk-sharing condition (4.4) across Ricardian

consumers in the SOE and the RoW. Our interpretation is linked to the role of the open-

economy dimension in risk-sharing seen clearly here: the benefit of foreign profits and
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international risk-sharing, originally going only to the R-types, now gets shared between

both R and C agents via the redistribution that makes the allocation equitable. The more

open an economy, the wider the range of risk-sharing.

4.3 The Optimal Policy Problem with Commitment

The optimal policy problem consists of minimizing the second-order approximation to

social welfare loss, given the constraints embodied in the model economy, summarized by

the intertemporal IS equation (NKIS) and the NKPC of Section 3. For the remainder

of the optimal policy analysis, along with the restrictions in Assumption 1, we choose

the steady state of the determinacy analysis of Section 3 corresponding to the optimal

equitable allocation. As is standard in the literature, we rewrite these equations in terms

of the output gap xt and the natural rate of interest rnt . From appendix C.1 we have:

xt = Etxt+1 − wCΞ (rt − EtπH,t+1 − rnt ) , (4.12)

πH,t = βEtπH,t+1 + κxt + ut, (4.13)

where the parameters Ξ = Ξ(λ,wC) and κ = κ(λ,wC) determine the slopes of the NKIS

and NKPC curves given by:

Ξ =
λ

wC(λ− (1− λ)wCϕ)
, (4.14)

κ ≡ ΨΥ

Ξ
= Ψ

(1 + wCϕ)λ+ (1− wC)ϕ

λ
, (4.15)

Υ =
(1 + wCϕ)λ+ (1− wC)ϕ

wC(λ− (1− λ)wCϕ)
, (4.16)

Ψ ≡ (1− ξ) (1− βξ)
ξ

. (4.17)

In (4.13) we have added a cost-push mark-up shock process ut, which in logs is of AR(1)

form, ut = ρuut−1 +εt, where εt is i.i.d. Note also that given the restrictions of Assumption

1 equation (3.4) becomes (4.16).28 It follows that the threshold λ∗ at which IADL occurs:

λ < λ∗ =
wCϕ

1 + wCϕ
. (4.18)

28In particular, setting σ = 1 and F = 0 implies ζ =∞.
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Figure 7: Role of LAMP (λ) and trade openness (wC = 0.5, 0.6, 0.7) for the slopes of the NKPC
and NKIS, respectively. Parameter values are Ψ = 0.086, ϕ = 2, β = 0.99, and σ = µC = 1. The
values of λ∗ for each value of wC are shown with the dashed lines in the right-hand chart.

Recall from Section 3 that the slopes of the NKIS and NKPC are affected both by λ and wC ,

which operate via the composite parameters κ and Ξ, where ∂κ
∂wC

, ∂κ∂λ < 0 and ∂Ξ
∂wC

, ∂Ξ
∂λ < 0.

Figure 7 illustrates the role of trade openness and LAMP for the NKIS and NKPC, setting

σ = µC = 1, β = 0.99, ϕ = 2, and Ψ = 0.086. For any given wC and inverse Frisch elasticity

ϕ, when gradually increasing the degree of LAMP from nil (at λ = 1), at some point the

sign of the NKIS curve becomes positive (as Ξ becomes negative). The intuition is that

the more open the economy or the higher the degree of LAMP, the less domestic output

depends on the domestic real interest rate. The latter is because constrained consumers

spend their current income irrespective of the interest rate. Observe that for this restricted

parameterization the slope, but now not the sign, of the NKPC is affected by λ and wC , so

that the output gap exerts greater influence on domestic inflation in the SOE with LAMP.

The intuition is straightforward: the more open the economy, the more domestic inflation

depends on the domestic output gap via the aggregate demand effect of increased spending

on imports; and the higher the degree of LAMP, the more domestic inflation depends on

the domestic output gap due to a greater share of C-type households consuming all current

income, thus strengthening the link between output and inflation.

In light of Proposition 5 we now choose our social welfare criterion and by implication the

welfare-relevant output gap.

Assumption 2. (Social welfare criterion) Our social welfare criterion is a second-
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order approximation of the sum of the Ricardian and constrained households utility weighted

by their mass in the region of the optimal equitable flexible-price allocation Ȳt with a welfare-

relevant output gap xt = Yt−Ȳt
Ȳt

supported by the subsidy scheme of Proposition 5.

The form of this welfare criterion is given by the following proposition:

Proposition 6. (Social welfare loss with a flexi-price equilibrium) For the non-

linear model of Section 2 and welfare-relevant output gap xt, given Proposition 5, the

micro-founded social welfare loss criterion for the LAMP SOE is approximated as:

Ω0 = E0

∞∑
t=0

βt
[

1

2
(π2
H,t +$x2

t )− Λxxt

]
, (4.19)

where $ = $(λ) = Ψ(1+ϕ)
ζλ , Ψ ≡ (1−βξ)(1−ξ)

ξ , Λx = (1−wC)(1−λ)ϕ
λ .

Proof: See appendix D.1.

The linear term in xt captures the fact that any marginal increase in the output gap relative

to its steady state value has a positive first-order effect on social welfare, since output is

below its efficient level at that steady state.

We now turn to the policy implications of our results with respect to the central bank

operating under commitment, before deriving the corresponding optimal targeting rule.

4.4 Optimal Policy with Interest Rate Inertia

Nominal interest rate inertia can be introduced by penalizing its variance. The Lagrangian

function for the optimization problem under commitment is now given by:

LC ({xt, πt}∞t=0 ; {µt}∞t=0 ; {νt}∞t=0) ≡ E0

∞∑
t=0

βt
[

1
2

(
π2
H,t +$x2

t + wrr
2
t

)
− Λxxt

+ µt (πH,t − κxt − βπH,t+1) + νt (xt − xt+1 + ΞwC (rt − πH,t+1 − rnt ))
]

+ t.i.p., (4.20)

for the welfare-relevant output gap xt, where {µt}∞t=0 and {νt}∞t=0 are sequences of Lagrange

multipliers for t = 0, 1, 2, ..., and the law of iterated expectations has been applied to elimi-

nate the conditional expectation that appeared in each constraint. The penalty associated

with the variance of the interest rate can be formalized in terms of an approximation to

the ZLB on the nominal interest rate (see Giannoni and Woodford, 2003; Levine, McAdam
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and Pearlman, 2008; Woodford, 2003a, chap 6).29

Differentiating the Lagrangian function with respect to the decision variables, we obtain

the respective first-order conditions:

∂LC
(
{xt, πH,t}∞t=0 ; {µt}∞t=0 ; {νt}∞t=0

)
∂xt

= $xt − κµt − Λx + νt −
1

β
νt−1 = 0, (4.21)

∂LC
(
{xt, πH,t}∞t=0 ; {µt}∞t=0 ; {νt}∞t=0

)
∂πH,t

= πH,t + µt − µt−1 −
ΞwC
β

νt−1 = 0, (4.22)

∂LC
(
{xt, πH,t}∞t=0 ; {µt}∞t=0 ; {νt}∞t=0

)
∂rt

= wrrt + ΞwCνt = 0, (4.23)

which must hold for t = 0, 1, 2, ..., where µ−1 = 0 and ν−1 = 0.30 Equations (4.21)–(4.23)

plus the NKIS and NKPC equations yield an equilibrium in the multipliers µt and νt, and

endogenous variables rt, πH,t, and xt.

Proposition 7. Define

dt = πH,t +
1

κ
(1− L) ($xt − Λx) = πH,t +

1

κ
$(xt − xt−1) (4.24)

as a departure from the ‘leaning against the wind’ optimal condition (or ‘wedge’), where

πH,t + 1
κ$(xt − xt−1) = 0 in the case of no penalizing of the interest rate variance when

wr = 0. Then the optimal policy with commitment is given by:

rt =

(
1 +

1

β
+
κΞwC
β

)
rt−1 −

1

β
rt−2 +

κΞwC
wr

dt. (4.25)

Optimal policy can be implemented by the following approximate first-order dynamic inertial

Taylor-type rule that responds only to the wedge:31

rt =

(
1 +

κΞwC
β

)
rt−1 +

κΞwC
wr

dt. (4.26)

29We can also motivate the loss from interest rate volatility as stemming from non-modeled features other
than the ZLB that provide incentive to smooth interest rates. See, e.g., Rudebusch and Svensson (1999),
Woodford (2003b), and Givens (2012).

30The last equality results because the inflation first-order condition corresponding to period −1 is not
an effective constraint to the monetary authority when choosing its optimal policy plan in period 0.

31Another approximation to the optimal rule, only available under SADL, which can be generalized to
higher-order responses to the wedge, is shown in appendix D.2.
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Proof: See appendix D.2

Rule (4.25) is the open-economy version of the robustly optimal and timeless implicit

instrument rule derived in Giannoni and Woodford (2003) for closed economies. It is

robust in the sense that it is independent of the nature of the exogenous disturbances. It is

timeless in the sense that is the same for all periods t ≥ 0, as opposed to the optimal time-

variant, once-and-for-all commitment to (4.25) from t ≥ 2 with µ−1 = ν−1 = 0 implying a

different setting in periods t = 0 and t = 1. Under the restricted parameterization of the

model, the optimal rule (4.25) takes the form of an inertial Taylor-type interest-rate rule

(4.26) targeting domestic inflation and output gap growth.32

It follows that both the optimal rule (4.25) and the inertial Taylor-type rule (4.26) is super-

inertial under SADL (since Ξ > 0), whereas the degree of inertia is significantly lower and

not super-inertial under IADL. The degree of (super) inertia is independent of the weight

wr on the variance of the nominal interest rate rt, and depends on the discount factor β,

the degree of openness 1 − wC , and the intrinsic dynamics driving the NKPC and NKIS

equations via the parameters κ and Ξ, respectively. It is the latter that determines the

transmission of changes to rt on outcomes, whilst the optimal choice of such changes only

depends on wr through the response to the wedge dt.

How accurate is the inertial Taylor-type rule given by (4.26) as a representation of the fully

optimal policy rule (4.25) with a variance penalty? Figure 8 addresses this question by

comparing the optimal deviations from the equitable steady state under (4.25) and (4.26)

in response to a positive mark-up shock. We use the restricted parameter values outlined

in Section 4.2 setting wr = 1 with the persistence of the shock equal to ρu = 0.7. Panel (a)

illustrates the SADL case (λ > λ∗) and panel (b) depicts the IADL case (λ < λ∗). Notice

that the optimal policy rule (4.25) can generate oscillatory behaviour under IADL, which

becomes more pronounced the further the rule departs from dt = 0. This is particularly true

for either high levels of LAMP or high values of wr where the interest rate is determined

less by inflation and output and more by history dependence. In these cases, the Taylor-

type rule (4.26) smooths out the oscillations, while still delivering very similar outcomes

for output and inflation as the optimal policy rule.33

32In appendix D.3 we show how the implicit instrument rule (4.26) can be implemented in the form shown
in the determinacy analysis of Section 3.

33This is demonstrated by Figures 20 and 21 in appendix D.4 that depict the simulations under the
optimal policy rule (4.25) for variations in both the variance penalty and trade openness.
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Figure 8: Optimal monetary policy: optimal rule (black line) vs approximation (red line). Pa-
rameter values are λ = 0.5, 0.7, Ψ = 0.086, ϕ = 2, β = 0.99, σ = µC = wr = 1, and wC = 0.6.

In the aftermath of a mark-up shock, two optimal policy trade-offs arise. In the first

trade-off, determined by wr, greater interest rate stability comes at the cost of reduced

stabilization of the wedge dt. The second is the standard trade-off, where lower inflation

variability comes at the expense of greater output gap volatility, the outcome of which is

determined by the standard ‘leaning against the wind’ policy, and the relative weight of

these variables given in equation (4.24). Below, we consider how these monetary policy

trade-offs are affected by the degree of trade openness and LAMP.

To evaluate the first trade off, we turn to simulations in response to a positive mark-up

shock with persistence ρu = 0.7 using the restricted parameterization of Section 4.2. For the

approximation rule (4.26), Figure 9 displays the effect of higher interest-rate stabilization

brought about by increasing the penalty parameter wr for the cases of λ > λ∗ (SADL)

and λ < λ∗ (IADL), where λ∗ is the IADL threshold given by (4.18), which equals λ∗ =

0.546 with wC = 0.6 and ϕ = 2. In both the SADL and IADL cases, an increase in the
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Figure 9: Optimal policy (approximation rule) and variance penalty for wr = 0.1 (black line),
wr = 1 (red line) and wr = 10 (blue line). Parameter values are λ = 0.5, 0.7, Ψ = 0.086, ϕ = 2,
β = 0.99, σ = µC = 1, wC = 0.6.

penalty dampens the monetary policy response. While domestic (and CPI) inflation is

accommodated to limit the fall in output,34 the wedge dt moves further from its optimal

value (i.e., dt = 0) as the penalty parameter increases, resulting in a significant difference

between the SADL and IADL cases.

Table 1 reports the optimal policy coefficients ρr, θπ, θx of the rule (4.26) for different

values of λ and wC . Under SADL an increase in the share of hand-to-mouth behaviour

calls for higher values for θπ and θx and a stronger degree of super-inertia. Under IADL,

super-inertial policy is not optimal, and the coefficients for θπ and θx turn negative. While

the parameter governing policy inertia in (4.25) or (4.26) is also increasing with the degree

of LAMP in the IADL case, for values of λ below but close to λ∗, the degree of policy

34Since no efficiency shocks in the model are used in this section, the natural rate of output remains at
its steady state (xt = yt − ynt = yt). Therefore, the output gap equals output.
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λ = 0.9 λ = 0.7 λ = 0.5 λ = 0.3

wC = 1 0.8 0.6 1 0.8 0.6 1 0.8 0.6 1 0.8 0.6

rt = ρrrt−1 + θππH,t + θx (xt − xt−1)

ρr 1.33 1.32 1.31 2.82 1.87 1.60 0.74 0.51 -0.65 0.93 0.88 0.77

θπ 0.33 0.32 0.31 1.80 0.87 0.59 -0.26 -0.49 -1.63 -0.07 -0.12 -0.23

θx 0.05 0.05 0.05 0.37 0.17 0.11 -0.07 -0.12 -0.37 -0.03 -0.04 -0.07

Table 1: Coefficients for the inertial Taylor-type rule approximation to optimal policy. Parame-
terization is the same as in Figure 9. For λ = 0.9, 0.7 > λ∗, whereas for λ = 0.5, 0.3 < λ∗.

Quarters

%
 d

e
v
ia

ti
o

n
 f

ro
m

 S
S

0 10 20
0

0.5

1
Markup Shock

0 10 20

0

0.2

0.4

Domestic Inflation

0 10 20

0

0.1

0.2
Real interest Rate

0 10 20

-2

-1

0
Output Gap

0 10 20

0

0.02

0.04

Nominal Interest Rate

0 10 20

-0.05

0

0.05
Wedge

Quarters

%
 d

e
v
ia

ti
o

n
 f

ro
m

 S
S

0 10 20
0

0.5

1
Markup Shock

0 10 20
0

0.5

1
Domestic Inflation

0 10 20

-0.4

-0.2

0
Real interest Rate

0 10 20

-2

-1

0
Output Gap

0 10 20

-0.2

-0.1

0

Nominal Interest Rate

0 10 20

0

0.2

0.4

0.6
Wedge

(a) SADL (λ = 0.7 > λ∗) (b) IADL (λ = 0.5 < λ∗)

Figure 10: Optimal policy (approximation rule) and openness for wC = 1 (black line), wC = 0.8
(red line) and wC = 0.6 (blue line). Parameter values are λ = 0.5, 0.7, Ψ = 0.086, ϕ = 2, β = 0.99,
and σ = µC = wr = 1.

inertia can become negative and so in this region an increase in the share of hand-to-

mouth behaviour can lower the degree of history dependence.

In Figure 10 we examine the effect of trade openness on optimal policy for the SADL and
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IADL cases, again using the approximation rule (4.26) setting wr = 1.35 In open economies,

the exchange rate provides an additional channel for the transmission of monetary policy.

For the SADL case, the exchange rate appreciation further reinforces the monetary con-

traction, reducing the optimal interest rate response to higher inflation. Consequently,

both the optimal rule (and its approximation) exhibit a smaller response to inflation and

output, and a lower degree of super-inertia, the more open the economy becomes. At

the same time, trade openness weakens the link between output and the domestic real

interest rate, which eases the trade-off in open economies under SADL and permits the

larger monetary policy response seen in Figure 10. The opposite is true under IADL. Since

the real interest rate falls in this case, the optimal policy generates a depreciation of the

exchange rate, which requires a larger response to inflation and output, as the degree of

openness increases. At the same time, increasing trade openness gives real interest rate

adjustments a larger impact on output in the IADL case. This magnifies the impact of

policy adjustments and leads to the smaller policy response in open economies shown in

Figure 10.

Finally, regarding the trade-off between inflation and output stabilization, we find that

this trade-off is unaffected by the IADL threshold. In both SADL and IADL economies, a

higher degree of trade openness requires greater stabilization of domestic inflation relative

to the output gap, whereas a higher degree of LAMP requires the opposite. The intuition

is as follows. The more open is the economy, the less the output gap depends on domestic

inflation, which eases the trade-off allowing the central bank to focus more on inflation.

In contrast, the higher the share of hand-to-mouth behaviour, the larger the movements

in demand which worsens the trade-off with the opposite effect. This reinforces the earlier

work of Bilbiie (2008) and Iyer (2016) who both consider optimal monetary policy but in

the absence of inertia.36

35For the restricted parameterization of Section 4.2, the IADL threshold λ∗ given by (4.18) equals
λ∗(wC) = 0.546, 0.615, 0.667 under wC = 0.6, 0.8, 1.0. We choose λ = 0.7 (SADL) and λ = 0.5 (IADL) to
represent the two cases.

36Bilbiie (2008) finds the optimal response to inflation is decreasing in the degree of LAMP for a closed
economy. Iyer (2016) shows that the output gap should be stabilised relatively more in a SOE with higher
LAMP, in order to smooth the disposable income of hand-to-mouth agents.
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5 Concluding Remarks

This paper examines the role of limited asset market participation, trade openness, and

interest-rate inertia in the design of monetary policy. These features are empirically-

relevant and are shown to have important considerations for policy.

Our main findings challenge the conventional wisdom that policymakers should engage in

interest-rate smoothing in two important ways. First, it is well established that policy

inertia helps increase the likelihood of determinacy in the absence of LAMP. In contrast,

we have shown for IADL economies that determinacy is actually undermined if the central

bank follows a policy rule with excessive interest-rate inertia. Therefore, the commonly-

advocated use of super-inertial feedback rules, including price-level (Wicksellian) rules, as

potential remedies for indeterminacy, are strongly ill-advised under LAMP.

Second, in the absence of hand-to-mouth households, optimal monetary policy is robust and

timeless with super-inertia, the latter arising from the costs of interest rate volatility. We

have shown that super-inertial policy is not optimal in IADL economies, and for empirically-

plausible values of LAMP, a negative weight for the interest-rate smoothing coefficient can

be optimal. It is important to stress the key role trade openness plays in our analysis.

It exerts a stabilizing effect in IADL economies, reducing the possibility of self-fulfilling

beliefs. Moreover, as emphasized in the optimal monetary policy analysis, the inertial

coefficient of the optimal targeting rule crucially depends on the degree of trade openness.

Our paper has some limitations. As is standard in the literature, we used a restricted pa-

rameterization of a stylized SOE economy, in order to obtain analytical results for optimal

monetary policy. However, it would be important to consider how our results change using

an extended model that, among other things, allows for capital, incomplete asset markets,

and local currency pricing. For example, using the full unrestricted SOE LAMP model set

out in Section 3.5, it is possible to compute simple optimized rules, choosing coefficients on

the variables of interest to minimize the welfare-theoretic social loss function. The policy

choice is then between alternative simple targeting rules, the ranking of which crucially

depends on the estimates of model parameters and shock processes. While this takes us

beyond the scope of this paper, it should be explored in future research.
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Technical Appendix: Derivations and Proofs (for online
publication)

A Equilibrium Conditions for Baseline LAMP Model

A.1 Households: Aggregate Consumption and Labour

Ct = λCCt + (1− λ)CRt

Nt = λNC
t + (1− λ)NR

t

(NC
t )ϕ

(CCt )−σ
= Wt

(NR
t )ϕ

(CRt )−σ
= Wt

CCt = WtN
C
t

1 = Et

[
ΛRt,t+1

Πt,t+1

]
Rt

1 = R∗tEt

[
ΛRt,t+1

Πt,t+1
ΠEt,t+1

]

A.2 Households: Consumption, Investment and Export Demand

St =
PF,t
PH,t

(A.1)

Pt
PH,t

=
(
wC + (1− wC)S1−µC

t

) 1
1−µC (A.2)

Pt
PF,t

=
(
wCS

µC−1
t + (1− wC)

) 1
1−µC (A.3)

Πt−1,t =

[
wC

(
ΠH,t−1,t

PH,t−1

Pt−1

)1−µC
+ (1− wC)

(
ΠF,t−1,t

PF,t−1

Pt−1

)1−µC
] 1

1−µC

(A.4)

CH,t = wC

(
PH,t
Pt

)−µC
Ct (A.5)

CF,t = (1− wC)

(
PF,t
Pt

)−µC
Ct (A.6)
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C∗H,t = (1− w∗C)

(
PH,t
PF,t

)−µ∗C
C∗t (A.7)

A.3 Firms

Wt =
Yt
Nt
MCt

PH,t
Pt

(A.8)

Y W
t = AtNt

Yt =
Y W
t − F

∆t

1 = ξ (ΠH,t−1,t)
ζ−1 + (1− ξ)

(
JJt
Jt

)1−ζ

P 0
H,t

PH,t
=
JJt
Jt

∆t = ξ (ΠH,t−1,t)
ζ ∆t−1 + (1− ξ)

(
JJt
Jt

)−ζ
JJt =

ζ

ζ − 1
YtMStMCt + ξEt

[
Λt,t+1 (ΠH,t,t+1)ζ+1 (Πt,t+1)−1 JJt+1

]
Jt = Yt + ξEt

[
Λt,t+1

(ΠH,t,t+1)ζ

Πt,t+1
Jt+1

]

MCt =
PWt
PH,t

A.4 Market Clearing

Yt = CH,t + C∗Ht

TBt =
PH,t
Pt

Yt − Ct

PBt
∗
BF,t =

ΠEt−1,t

Πt−1,t
BF,t−1 + TBt
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A.5 Deterministic Zero-Growth Steady State

In a non-zero-net inflation steady state given BF = B̄F , Π = ΠH = ΠF = Π∗, with

appropriate choice of units such that PH
P = PF

P = PO

P = 1 we have:

ΠE =
Π

Π∗

N = N

NC = 1

NR =
N − λNC

1− λ
S = 1

ΛR = β

R =
Π

β

R∗ =
Π∗

β∗

JJ

J
=

(
1− ξ (Π)ζ−1

1− ξ

) 1
1−ζ

MC =
JJ

J

ζ − 1

ζ

1− ξβ (ΠH)ζ

1− ξβ (Π)ζ−1

∆ =
(1− ξ)

(
JJ
J

)−ζ
1− ξ (ΠH)ζ

CC = NCW

Y W = N

Y =
Y W − F

∆

W =
Y

N
MC

BF = B̄F

TB =

(
1

R∗
− ΠS

Π

)
BF

C = Y − TB

CH = wCC
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CF = (1− wC)C

NR =
1

1− λ
N − λ

1− λ
NC

CR =
1

1− λ
C − λ

1− λ
CC

P 0
H

PH
=

J

JJ

JJ =

ζ
ζ−1YMC

1− ξβ (Π)ζ

J =
Y

1− ξβ (Π)ζ−1

EX = Y − CH
C∗H = EX

B Equilibrium Conditions for Model with Capital in Pro-

duction and Incomplete Asset Markets

B.1 Households: Aggregate Consumption and Labour

Ct = λCCt + (1− λ)CRt

Nt = λNC
t + (1− λ)NR

t

(NC
t )ϕ

(CCt )−σ
= Wt

(NR
t )ϕ

(CRt )−σ
= Wt

CCt = WtN
C
t

1 = Et

[
ΛRt,t+1

Πt,t+1

]
Rt

1 = R∗tφ

(EtB∗F,t
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)
Et

[
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ΠEt,t+1

]
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B.2 Households: Consumption, Investment and Export Demand

St =
PF,t
PH,t

(B.1)

Pt
PH,t

=
(
wC + (1− wC)S1−µC

t

) 1
1−µC (B.2)

Pt
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=
(
wCS
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t + (1− wC)

) 1
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) 1
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wIS
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) 1
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Pt−1
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] 1
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(B.6)

CH,t = wC

(
PH,t
Pt

)−µC
Ct (B.7)
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(
PF,t
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Ct (B.8)
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(
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B.3 Firms
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Rkt =
Zt + (1− δK)Qt

Qt−1

Y W
t = (AtNt)

1−αKα
t−1

Yt =
Y W
t − F

∆t

1 = ξ (ΠH,t−1,t)
ζ−1 + (1− ξ)

(
JJt
Jt

)1−ζ

∆t = ξ (ΠH,t−1,t)
ζ ∆t−1 + (1− ξ)

(
JJt
Jt

)−ζ
P 0
H,t
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=
JJt
Jt
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ζ − 1
YtMStMCt + ξEt
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Λt,t+1 (ΠH,t,t+1)ζ+1 (Πt,t+1)−1 JJt+1
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Jt = Yt + ξEt
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Kt = (1− δK)Kt−1 + (1− S(Xt))It
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B.4 Market Clearing

Yt = CH,t + C∗H,t + IH,t + I∗H,t +Gt

EXt = C∗H,t + I∗H,t

TBt =
PH,t
Pt

Yt − Ct −
PI,t
Pt

It −
PH,t
Pt

Gt

PBt
∗
BF,t =

ΠEt−1,t

Πt−1,t
BF,t−1 + TBt

B.5 Deterministic Zero-Growth Steady State

In a non-zero-net inflation steady state and constant Qt given Π = ΠH = ΠF = Π∗, with

appropriate choice of units such that PH
P = PF

P = P I

P = PO

P = 1 we have:

Q = 1
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ΠE =
Π

Π∗

N = N

NC = 1

NR =
N − λNC

1− λ
S = 1

ΛR = β

Q = 1

R =
Π

β

R∗ =
Π∗

β∗

φ =
R

R∗ΠE
=

Π
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β∗

β
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β
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J
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) 1
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BF = −Y log(φ)

φB
≥ 0 iff β ≥ β∗

TB =

(
1

φR∗
− ΠS

Π

)
BF

G = gyY

C = Y − I −G− TB

CH = wCC

CF = (1− wC)C

NR =
1

1− λ
N − λ

1− λ
NC

IH = wII

IF = (1− wI)I

CR =
1

1− λ
C − λ

1− λ
CC

P 0
H

PH
=

J

JJ

JJ =

ζ
ζ−1YMC

1− ξβ (Π)ζ

J =
Y

1− ξβ (Π)ζ−1

EX = Y − CH − IH −G

C∗H = EXC = EXC(1) = csexpEX

I∗H = EXI = EXI(1) = isexpEX

B.6 Dominant (or Local) Currency Pricing

To characterize exports being priced in a dominant currency, or indeed any foreign currency,

we introduce a second retail sector for exports in which the price is set in the foreign

currency.37 The nominal price rigidity is in the foreign currency.

The objective of domestic exporter m at time t is to choose P 0
X,t(m) to maximize discounted

37In general, there can be important differences between models characterized by dominant currency
pricing (DCP) and local currency pricing (LCP). However, for the determinacy exercise, we only need to
make sure that exports are priced in the foreign currency.
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real profits:

Et
∞∑
k=0

ξk
Λt,t+k
Pt+k

EXt+k(m)
[
Et+kP 0

X,t(m)− PH,t+kMCt+k
]

(B.15)

noting real marginal costs are deflated by the wholesale producer price index PH,t, so

MCt ≡ PWt /PH,t. Et+k is the nominal exchange rate. This is maximized is subject to

demand schedules:

EXt+k(m) =

(
P 0
X,t(m)

P ∗H,t+k

)−ζ
EXH,t+k, (B.16)

where Λt,t+k ≡ βk
UC,t+k
UC,t

is the stochastic discount factor over the interval [t, t+ k]. Using

the gross nominal depreciation of the SOE currency, ΠEt−1,t ≡ Et
Et−1

, this leads to an optimal

pricing condition

P 0
X,t

P ∗H,t
=

ζ

ζ − 1

PH,t
EtP ∗H,t

Et
∑∞

k=0 ξ
kΛt,t+k (Πt,t+k)

−1
(

Π∗H,t+k

)ζ
EXH,t+kΠH,t,t+kMCt+k

Et
∑∞

k=0 ξ
kΛt,t+k (Πt,t+k)

−1
(

Π∗H,t+k

)ζ
ΠEt,t+kEXH,t+k

(B.17)

Total output in the two retail sectors, domestically produced and sold goods, YH,t, and

export, EXt, are subject to the effects of price dispersion ∆t ≡
∫ 1

0

(
PH,t(m)
PH,t

)−ς
dm ≥ 1 and

∆X,t ≡
∫ 1

0

(
PX,t(m)
P ∗
H,t

)−ς
dm ≥ 1. Aggregate output Yt is given by:

Yt =
Yt − EXt

Yt

AtNt − F
∆t

+
EXt

Yt

AtNt − F
∆X,t

, (B.18)
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B.7 Calibration of Model Parameters

The baseline and alternative calibrations of the model used to produce numerical results

are given in Table 2.

Parameter Description Value

β (= β∗) Home (foreign) discount factor 0.99

Π (= Π∗) Steady-state home (foreign) inflation rate 1, 1.041/4, 1.061/4

σ Relative risk aversion 2

ϕ Inverse of the Frisch elasticity of labour supply 2

α Income share of capital 0, 0.3

δK Depreciation rate of capital 0.025

φI Investment adjustment costs 10

ξ Degree of price stickiness 0.75

1− λ Degree of LAMP λ ∈ [0, 1]

µC (= µ∗C), Elasticity of substitution between 0.62
µI (= µ∗I) home and foreign goods

1− wC , 1− wI Degree of trade openness 0.4

φB Bond adjustment costs 0.001

ζ Elasticity of substitution of differentiated goods 7

gY Government spending share of output 0.1

Table 2: Parameter Values Used in the Numerical Analysis of Determinacy

C Equilibrium Determinacy: Derivations and Proofs

C.1 Derivation of the Minimal Form of the Dynamic System

The model is linearized around a zero-growth, zero-inflation steady state so Π = 1 and

prices P = PH = PF = P ∗ = 1. Then by definition the steady state terms of trade and

real exchange rate are E = Q = 1. As discussed in the main text, we assume an equitable

steady state.38 All lower-case variables denote percentage deviations from the steady state.

All shocks are set equal to zero.

Aggregate demand:

yt = wCct + (1− wC)(cRt + ωst), (C.1)

38Therefore, we need either the zero-profit condition, F/Y = 1/ζ, or the subsidy scheme that supports
the welfare-relevant choice of the output gap xt.
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where ω ≡ wC(σµC−1)+σµ∗C
σ = σµC(1+wC)−wC

σ , if µC = µ∗C .

Aggregate supply:

πH,t = βπH,t+1 + Ψmct, (C.2)

mct = wt + (1− wC)st, (C.3)

yt = λ

(
1 +

1

ζ

)
nRt + (1− λ)

(
1 +

1

ζ

)
nCt , (C.4)

where Ψ ≡ (1−ξ)(1−βξ)
ξ > 0 and

πt = πH,t + (1− wC)(st − st−1). (C.5)

Household optimality conditions:

wt = ϕnRt + σcRt , (C.6)

wt = ϕnCt + σcCt , (C.7)

ct = λcRt + (1− λ)cCt , (C.8)

cCt = wt + nCt , (C.9)

st =
σ

wC
cRt , (C.10)

cRt = cRt+1 −
1

σ
(rt − πt+1). (C.11)

Combining (C.5), (C.10), and (C.11), we obtain:

πt = πH,t + (1− wC)
σ

wC
(cRt − cRt−1)

= πH,t + (1− wC)
1

wC
(rt−1 − πt). (C.12)

It follows that

rt − πt+1 = rt − πH,t+1 − (1− wC)
1

wC
(rt − πt+1)

from which

rt − πt+1 = wC(rt − πH,t+1). (C.13)
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The intertemporal IS equation (C.11) can be expressed as:

cRt+1 +
wC
σ
πH,t+1 −

wC
σ
rt = cRt . (C.14)

Using (C.6) to eliminate wt and (C.10) to eliminate st, equations (C.3), (C.7), and (C.9)

become:

mct = ϕnRt +
σ

wC
cRt , (C.15)

ϕnCt = ϕnRt + σcRt − σcCt , (C.16)

cCt = ϕnRt + σcRt + nCt . (C.17)

Using (C.8) and (C.10) to eliminate ct and st from (C.1) yields:

yt = wCλc
R
t + wC(1− λ)cCt + (1− wC)

[
1 +

ωσ

wC

]
cRt , (C.18)

and rearranging (C.4)

nRt =
1

λ
(

1 + 1
ζ

)yt − (1− λ)

λ
nCt . (C.19)

Combining (C.16) and (C.17) gives:

nCt =
ϕ(1− σ)

ϕ+ σ
nRt +

σ(1− σ)

ϕ+ σ
cRt . (C.20)

Combining (C.17), (C.18), and (C.20) yields:

yt = wCλc
R
t + wC(1− λ)

(1 + ϕ)

ϕ+ σ

[
ϕnRt + σcRt

]
+ (1− wC)

[
1 +

ωσ

wC

]
cRt . (C.21)

Combining (C.19), (C.20), and (C.21) gives:

nRt =

wCλ(ϕ+ σ) + (1− wC)(ϕ+ σ)
[
1 + ωσ

wC

]
+ (1− λ)σ

[
wC(1 + ϕ) + (σ − 1)

(
1 + 1

ζ

)]
λ(ϕ+ σ)

(
1 + 1

ζ

)
− (1− λ)ϕ

[
wC(1 + ϕ) + (σ − 1)

(
1 + 1

ζ

)]
 cRt .

(C.22)

Finally, combining (C.2), (C.15), and (C.19) – (C.22) results in

βπH,t+1 = πH,t −ΨΥcRt (C.23)
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yt = ΞcRt (C.24)

where

Υ =
σ

wC
+
ϕλwC(ϕ+ σ) + ϕ(1− wC)(ϕ+ σ)

[
1 + ωσ

wC

]
+ ϕσ(1− λ)

[
wC(1 + ϕ) + (σ − 1)

(
1 + 1

ζ

)]
λ(ϕ+ σ)

(
1 + 1

ζ

)
− (1− λ)ϕ

[
wC(1 + ϕ) + (σ − 1)

(
1 + 1

ζ

)] ,

⇒ Υ =
σ(1− wC)

wC
+

λ(ϕ+ σ)
[
wCϕ+ σ

(
1 + 1

ζ

)]
+ ϕ(1− wC)(ϕ+ σ)

[
1 + ωσ

wC

]
λ(ϕ+ σ)

(
1 + 1

ζ

)
− (1− λ)ϕ

[
wC(1 + ϕ) + (σ − 1)

(
1 + 1

ζ

)] .
(C.25)

and

Ξ ≡ wCλ+ (1− wC)

[
1 +

ωσ

wC

]
+ wC(1− λ)

(1 + ϕ)

ϕ+ σ

(
Υ− σ

wC
+ σ

)
, (C.26)

The interest-rate rule is given by:

rt = ρrrt−1 + θππt+1. (C.27)

The dynamic system given by (C.14), (C.23), and (C.27) can be expressed as:

zt+1 = Azt, zt =
[
cRt πH,t rt−1

]′
,

A ≡


1− ΨwCΥ(θπ−1)

βσ[1−(1−wC)θπ ]
wC(θπ−1)

βσ[1−(1−wC)θπ ]
ρrwC

σ[1−(1−wC)θπ ]

−ΨΥ
β

1
β 0

− ΨwCΥθπ
β[1−(1−wC)θπ ]

wCθπ
β[1−(1−wC)θπ ]

ρr
[1−(1−wC)θπ ]

 .
C.2 The NKIS and NKPC Equations with Assumption 1 Restrictions

From (C.14) with σ = 1:

yt = yt+1 − ΞwC (rt − πH,t+1) . (C.28)

where with σ = ω = 1, (C.26) becomes

Ξ = wCλ+ (1− wC)

[
1 +

1

wC

]
+ wC(1− λ)

(
Υ− 1

wC
+ 1

)
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=
λ

wC(λ− (1− λ)wCϕ)
(C.29)

In the flexi-price case, πH,t = 0, and hence:

ynt = ynt+1 − ΞwCr
n
t . (C.30)

Hence in terms of the output gap xt = yt − ynt we have

xt = xt+1 − ΞwC (rt − πH,t+1 − rnt ) . (C.31)

Next we turn to the NKPC which from (C.23) and (C.24) is given by

βπH,t+1 = πH,t −
ΨΥ

Ξ
yt (C.32)

where with σ = ω = 1 and ζ →∞, (C.25) becomes (with a little algebra)

Υ =
1− wC
wC

+
λ(wCϕ+ 1) + (1− wC)ϕ

(
1 + 1

wC

)
λ− (1− λ)wCϕ

=
(1 + wCϕ)λ+ (1− wC)ϕ

wC(λ− (1− λ)wCϕ)
(C.33)

Hence

Ξ =
λ

wC(λ− (1− λ)wCϕ)
(C.34)

and the slope of the NKPC (C.32) can be written κ ≡ ΨΥ
Ξ = Ψ (1+wCϕ)λ+(1−wC)ϕ

λ .

C.3 Proof of Proposition 1

Differentiating (3.6) we obtain

dλ∗

dwC
=

ϕ(1 + ϕ)(ϕ+ σ)
(

1 + 1
ζ

)
[
ϕ
[
wC(1 + ϕ) + (σ − 1)

(
1 + 1

ζ

)]
+ (ϕ+ σ)

(
1 + 1

ζ

)]2 .

Hence dλ∗

dwC
> 0 from which the proposition is proved. �
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C.4 Proof of Proposition 2

The necessary and sufficient conditions for equilibrium determinacy are as follows:

Case IA: If Υ > 0: 1
1−wC < θπ < Γ1 and ρr >

(
wC

1−wC

) [
ΨwCΥ

ΨwCΥ+2σ(1+β)

]
, where

Γ1 ≡ (1 + ρr)

[
1 +

2(1 + β)σwC
ΨwCΥ + 2σ(1 + β)(1− wC)

]
;

Case IB: If Υ > 0: 1 − ρr < θπ < min
{

1
1−wC ,Γ1

}
and one of the following inequalities

is satisfied: ∣∣∣∣−1− 1

β
− ρr

[1− (1− wC)θπ]
+

ΨwCΥ(θπ − 1)

βσ [1− (1− wC)θπ]

∣∣∣∣ > 3, (C.35)

1− β +
ρr

1− (1− wC)θπ

[
ρr(1−β)

β[1−(1−wC)θπ ] + β − 1
β + ΨwCΥ

σ

(
1 + θπ−1

β[1−(1−wC)θπ ]

)]
> 0;

(C.36)

Case IIA: If Υ < −2σ(1+β)
ΨwC

: and one of the following is satisfied:

(i) 1− ρr < θπ < min
{

1
1−wC , Γ1

}
,

(ii) Γ1 < θπ < 1− ρr, (1− ρr)(1 + β)σwC + [2σ(1 + β) + ΨwCΥ] ρr > 0 and one of

the inequalities given by (C.35)–(C.36) holds,

(iii) 1
1−wC < θπ < Γ1, ρr >

(
wC

1−wC

) [
ΨwCΥ

ΨwCΥ+2σ(1+β)

]
, and one of the inequalities

given by (C.35)–(C.36) holds;

Case IIB: If −2σ(1+β)
ΨwC

< Υ < −2σ(1+β)(1−wC)
ΨwC

: θπ < 1 − ρr, and one of the inequalities

given by (C.35)–(C.36) is satisfied;

Case IIC: If −2σ(1+β)(1−wC)
ΨwC

< Υ < 0: one of the inequalities given by (C.35)–(C.36) is

satisfied, and either θπ < 1− ρr or θπ > max
{

1
1−wC ,Γ1

}
.

These arise from the following derivation. The minimum state-space representation of the

model is zt+1 = Azt where A is given by (C.1). The three eigenvalues of A are solutions to

the cubic equation r3+a2r
2+a1r+a0 = 0, where a2 = −1− 1

β−
ρr

[1−(1−wC)θπ ] +
ΨwCΥ(θπ−1)

βσ[1−(1−wC)θπ ] ,

a1 = 1
β + (1+β)ρr

β[1−(1−wC)θπ ] + ΨwCΥρr
βσ[1−(1−wC)θπ ] , and a0 = − ρr

β[1−(1−wC)θπ ] . With one predetermined

variable rt−1, determinacy requires that one eigenvalue is inside the unit circle and two
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eigenvalues are outside the unit circle. By Proposition C.2 of Woodford (2003), this is the

case if and only if either of the following two cases is satisfied: Case I: 1 +a2 +a1 +a0 < 0,

−1 + a2 − a1 + a0 > 0, Case II: 1 + a2 + a1 + a0 > 0, −1 + a2 − a1 + a0 < 0, and either

|a2| > 3 or a2
0 − a0a2 + a1 − 1 > 0.

For Case I, the two inequalities reduce to:

ΨwCΥ(θπ − 1 + ρr)

βσ [1− (1− wC)θπ]
< 0, (C.37)

−2(1 + β)

(
1 +

ρr
[1− (1− wC)θπ]

)
+

ΨwCΥ(θπ − 1− ρr)
σ [1− (1− wC)θπ]

> 0. (C.38)

First assume that Υ > 0. Condition (C.37) requires either (i) 0 < θπ < min
{

1− ρr, 1
1−wC

}
or (ii) max

{
1− ρr, 1

1−wC

}
< θπ. By inspection, (C.38) can never be satisfied under (i).

For (ii), first note that the lower-bound 1−ρr is redundant since 1−ρr < 1
1−wC and (C.38)

requires:

θπ <
(1 + ρr) [ΨwCΥ + 2σ(1 + β)]

ΨwCΥ + 2σ(1 + β)(1− wC)
. (C.39)

For the determinacy region to be non-empty requires
(

wC
1−wC

) [
ΨwCΥ

ΨwCΥ+2σ(1+β)

]
< ρr. Now

assume that Υ < 0. Condition (C.37) requires that 1−ρr < θπ <
1

1−wC and (C.38) requires

θπ [ΨwCΥ + 2σ(1 + β)(1− wC)] > (1 + ρr) [ΨwCΥ + 2σ(1 + β)]. The latter can only be

satisfied if ΨwCΥ + 2σ(1 + β)(1−wC) < 0 and ΨwCΥ + 2σ(1 + β) < 0, which requires an

additional upper-bound on θπ given by (C.39).

For Case II, the first two inequalities reduce to:

ΨwCΥ(θπ − 1 + ρr)

βσ [1− (1− wC)θπ]
> 0, (C.40)

−2(1 + β)

(
1 +

ρr
[1− (1− wC)θπ]

)
+

ΨwCΥ(θπ − 1− ρr)
σ [1− (1− wC)θπ]

< 0. (C.41)

First assume that Υ > 0. Equation (C.40) requires that 1 − ρr < θπ <
1

1−wC and (C.41)

requires the upper-bound on θπ given by (C.39). The remaining inequalities give (C.35)

and (C.36). Now assume that Υ < 0. Condition (C.40) requires either (i) 0 < θπ <

min
{

1− ρr, 1
1−wC

}
or (ii) max

{
1− ρr, 1

1−wC

}
< θπ. For (i), first note that 1−ρr < 1

1−wC ,

and (C.41) requires θπ [ΨwCΥ + 2σ(1 + β)(1− wC)] < (1+ρr) [ΨwCΥ + 2σ(1 + β)], which
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is always satisfied if ΨwCΥ + 2σ(1 + β)(1 − wC) < 0 and ΨwCΥ + 2σ(1 + β) > 0. If

ΨwCΥ + 2σ(1 + β)(1 − wC) > 0 and ΨwCΥ + 2σ(1 + β) > 0, the upper-bound (C.39) is

redundant. If ΨwCΥ + 2σ(1 + β)(1− wC) < 0 and ΨwCΥ + 2σ(1 + β) < 0, the following

lower-bound on θπ is needed:

θπ >
(1 + ρr) [ΨwCΥ + 2σ(1 + β)]

ΨwCΥ + 2σ(1 + β)(1− wC)
. (C.42)

For the region to be non-empty requires (1− ρr)(1 + β)σwC + [2σ(1 + β) + wCΨΥ] ρr > 0.

The remaining inequalities give (C.35) and (C.36). For (ii), the lower-bound 1−ρr is redun-

dant and (C.41) requires θπ [ΨwCΥ + 2σ(1 + β)(1− wC)] > (1 + ρr) [ΨwCΥ + 2σ(1 + β)],

which can never be satisfied if ΨwCΥ + 2σ(1 +β)(1−wC) < 0 and ΨwCΥ + 2σ(1 +β) > 0.

If ΨwCΥ+2σ(1+β)(1−wC) > 0 and ΨwCΥ+2σ(1+β) > 0, an additional lower-bound on

θπ given by (C.41) is required. If ΨwCΥ+2σ(1+β)(1−wC) < 0 and ΨwCΥ+2σ(1+β) < 0,

requires the upper-bound on θπ given by (C.39). For the determinacy region to be non-

empty requires
(

wC
1−wC

) [
ΨwCΥ

ΨwCΥ+2σ(1+β)

]
< ρr. The remaining inequalities give (C.35) and

(C.36). This completes the proof. �

C.5 Proof of Proposition 3

The necessary and sufficient conditions for equilibrium determinacy under a domestic-price

inflation rule with interest-rate inertia are as follows:

Case I: If Υ > 0 : max{0, 1− ρr} < θπ < (1 + ρr)

[
1 +

2σ(1 + β)

ΨwCΥ

]
,

and one of the following inequalities is satisfied:∣∣∣∣−1− 1

β
− ρr +

ΨwCΥ(θπ − 1)

βσ

∣∣∣∣ > 3, (C.43)

1− β + ρr

[
ρr(1− β)

β
+ β − 1

β
+

ΨwCΥ

σ

(
1 +

θπ − 1

β

)]
> 0. (C.44)

Case IIA: Υ < 0, and max{0, 1− ρr} < θπ < (1 + ρr)

[
1 +

2σ(1 + β)

ΨwCΥ

]
.

Case IIB: Υ < 0, (1 + ρr)

[
1 +

2σ(1 + β)

ΨwCΥ

]
< θπ < 1− ρr,
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and one of the inequalities given by (C.43) and (C.44) is satisfied.

These conditions arise from the following derivation. The dynamic system is given by:

cRt+1 +
wC
σ
πH,t+1 −

wC
σ
rt = cRt , (C.45)

βπH,t+1 = πH,t −ΨΥcRt , (C.46)

rt = ρrrt−1 + θππH,t+1, (C.47)

which can be expressed as:

zt+1 = A2zt, zt =
[
cRt πH,t rt−1

]′
, A2 ≡

 1− ΨwCΥ(θπ−1)
βσ

wC(θπ−1)
βσ

ρrwC
σ

−ΨΥ
β

1
β 0

−ΨΥθπ
β

θπ
β ρr

 .
The three eigenvalues of A2 are solutions to the cubic equation r3 + a2r

2 + a1r + a0 = 0,

where a2 = −1 − 1
β − ρr + ΨwCΥ(θπ−1)

βσ , a1 = 1
β + (1+β)ρr

β + ΨwCΥρr
βσ , and a0 = −ρr

β . With

one predetermined variable rt−1, determinacy requires that one eigenvalue is inside the

unit circle and two eigenvalues are outside the unit circle. By Proposition C.2 of Woodford

(2003), this is the case if and only if either of the following two cases is satisfied: Case I:

1+a2 +a1 +a0 < 0, −1+a2−a1 +a0 > 0, Case II: 1+a2 +a1 +a0 > 0, −1+a2−a1 +a0 < 0,

and either |a2| > 3 or a2
0 − a0a2 + a1 − 1 > 0. For Case I, the second inequality can never

be satisfied with Υ > 0. With Υ < 0, the first inequality of Case I requires 1−ρr < θπ and

the second inequality yields θπ < (1 + ρr)
[
1 + 2σ(1+β)

ΨwCΥ

]
. For Case II, the first inequality

requires either Υ > 0 and θπ > 1− ρr, or Υ < 0 and θπ < 1− ρr. With Υ > 0, the second

inequality is automatically satisfied if θπ < 1 + ρr. Otherwise, the following upper-bound

θπ < (1 + ρr)
[
1 + 2σ(1+β)

ΨwCΥ

]
is additionally required. With Υ < 0, the second inequality

yields θπ > (1 + ρr)
[
1 + 2σ(1+β)

ΨwCΥ

]
. The remaining inequalities of Case II give (C.43)

and (C.44). This completes the proof. The analytical conditions indicate that increasing

policy inertia enlarges the region of determinacy under Case I and IIA, and shrinks the

determinacy region under Case IIB. For a standard range of parameter values, Case IIA

only holds for a small range of λ < λ∗ and the combined impact of increased inertia on

the bounds of Cases IIA and IIB results in an overall reduced policy space. The effect of

openness is ambiguous from these conditions, however from numerical results, we find that

Page 18 of 45



(a) Open economy

(b) Closed economy

Figure 11: Determinacy regions for small model with domestic-price inflation targeting. Parameter
values are Ψ = 0.086, ϕ = σ = 2, ζ = 7, β = 0.99, and wC = 0.6, µC = 0.62 for the open economy
(top panel) and wC = 1 for the closed economy (bottom panel). The red vertical line gives λ∗ below
which IADL holds.

openness appears to enlarge the determinate policy space under SADL and shrink it under

IADL for standard parameter. Determinacy regions are shown in Figure 11.

C.6 Proof of Proposition 4

The necessary and sufficient conditions for equilibrium determinacy under an interest-rate

rule that reacts to future consumer-price inflation rule and contemporaneous output with

interest-rate inertia are:

Case IA: max
{

1
1−wC , 1− ρr −

(1−β)Ξ
ΨΥ θy

}
< θπ < Γ1 and ρr >

(
wC

1−wC

) [
ΨwCΥ−(1−wC)(1+β)Ξθy

ΨwCΥ+2σ(1+β)

]
.

Case IB: max
{

0, 1− ρr − (1−β)Ξ
ΨΥ θy

}
< θπ < min

{
1

1−wC ,Γ1

}
and one of the following
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inequalities is satisfied:∣∣∣∣−1− 1

β
− ρr

[1− (1− wC)θπ]
+

ΨwCΥ(θπ − 1)

βσ [1− (1− wC)θπ]
− wCΞθy
σ [1− (1− wC)θπ]

∣∣∣∣ > 3,

(C.48)

1− β +
ρr

1− (1− wC)θπ

ρr(1− β)

β [1− (1− wC)θπ]
+ β − 1

β
+

ΨwCΥ

σ

(
1 +

θπ − 1

β [1− (1− wC)θπ]

)
+

wCΞθy
1− (1− wC)θπ

[
1− ρr − (1− wC)θπ
σ [1− (1− wC)θπ]

]
> 0,

(C.49)

where

Γ1 ≡ (1 + ρr)

[
1 +

2(1 + β)σwC
ΨwCΥ + 2σ(1 + β)(1− wC)

]
+

wC(1 + β)Ξ

ΨwCΥ + 2σ(1 + β)(1− wC)
θy.

Case IIA: Υ < σ(1−wC)
wC

− (ϕ+σ)
wC(1−λ)(1+ϕ)

[
wCλ+ σµC(1+wC)(1−wC)

wC

]
and one of the follow-

ing:

(i) 1−ρr− (1−β)Ξ
ΨΥ θy < θπ <

1
1−wC and θy >

θπ
Ξ

[
ΨΥ
1+β + 2σ(1−wC)

wC

]
− (1+ρr)

Ξ

(
ΨΥ
1+β + 2σ

wC

)
.

(ii) 0 < θπ < min
{

1− ρr − (1−β)Ξ
ΨΥ θy,

1
1−wC

}
, θy <

θπ
Ξ

[
ΨΥ
1+β + 2σ(1−wC)

wC

]
− (1+ρr)

Ξ

(
ΨΥ
1+β + 2σ

wC

)
and one of the inequalities given by (C.48)–(C.49) is satisfied.

(iii) θπ > max
{

1− ρr − (1−β)Ξ
ΨΥ θy,

1
1−wC

}
, θy >

θπ
Ξ

[
ΨΥ
1+β + 2σ(1−wC)

wC

]
− (1+ρr)

Ξ

(
ΨΥ
1+β + 2σ

wC

)
and one of the inequalities given by (C.48)–(C.49) is satisfied.

Case IIB: σ(1−wC)
wC

− (ϕ+σ)
wC(1−λ)(1+ϕ)

[
wCλ+ σµC(1+wC)(1−wC)

wC

]
< Υ < 0 and one of the

following:

(i) 1−ρr− (1−β)Ξ
ΨΥ θy < θπ <

1
1−wC , ρr > − (1−β)Ξ

ΨΥ θy− wC
1−wC and θy <

θπ
Ξ

[
ΨΥ
1+β + 2σ(1−wC)

wC

]
−

(1+ρr)
Ξ

(
ΨΥ
1+β + 2σ

wC

)
.

(ii) 1
1−wC < θπ < 1−ρr− (1−β)Ξ

ΨΥ θy, ρr < − (1−β)Ξ
ΨΥ θy− wC

1−wC and θy >
θπ
Ξ

[
ΨΥ
1+β + 2σ(1−wC)

wC

]
−

(1+ρr)
Ξ

(
ΨΥ
1+β + 2σ

wC

)
.

(iii) 0 < θπ < min
{

1− ρr − (1−β)Ξ
ΨΥ θy,

1
1−wC

}
and one of the inequalities given by

(C.48)–(C.49) is satisfied.

(iv) θπ > max
{

1− ρr − (1−β)Ξ
ΨΥ θy,

1
1−wC

}
, θy <

θπ
Ξ

[
ΨΥ
1+β + 2σ(1−wC)

wC

]
− (1+ρr)

Ξ

(
ΨΥ
1+β + 2σ

wC

)
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and one of the inequalities given by (C.48)–(C.49) is satisfied.

The above conditions arise from the following derivation. The dynamic system is given by:

cRt+1 +
wC
σ
πH,t+1 −

wC
σ
rt = cRt , (C.50)

βπH,t+1 = πH,t −ΨΥcRt , (C.51)

rt −
σ(1− wC)θπ

wC
cRt+1 − θππH,t+1 = ρrrt−1 +

[
Ξθy −

σ(1− wC)θπ
wC

]
cRt . (C.52)

This can be expressed as:

zt+1 = A3zt, zt =
[
cRt πH,t rt−1

]′
,

A3 ≡


1− ΨwCΥ(θπ−1)

βσ[1−(1−wC)θπ ] +
wCΞθy

σ[1−(1−wC)θπ ]
wC(θπ−1)

βσ[1−(1−wC)θπ ]
ρrwC

σ[1−(1−wC)θπ ]

−ΨΥ
β

1
β 0

− ΨwCΥθπ
β[1−(1−wC)θπ ] +

Ξθy
1−(1−wC)θπ

wCθπ
β[1−(1−wC)θπ ]

ρr
1−(1−wC)θπ

 .
The three eigenvalues of A3 are solutions to the cubic equation r3 + a2r

2 + a1r + a0 = 0,

where a2 = −1− 1
β −

ρr
1−(1−wC)θπ

+ ΨwCΥ(θπ−1)
βσ[1−(1−wC)θπ ] −

wCΞθy
σ[1−(1−wC)θπ ] , a1 = 1

β + (1+β)ρr
β[1−(1−wC)θπ ] +

ΨwCΥρr
βσ[1−(1−wC)θπ ] +

wCΞθy
βσ[1−(1−wC)θπ ] , and a0 = − ρr

β[1−(1−wC)θπ ] . With one predetermined variable

rt−1, determinacy requires that one eigenvalue is inside the unit circle and two eigenvalues

are outside the unit circle. By Proposition C.2 of Woodford (2003), this is the case if

and only if either of the following two cases is satisfied: Case I: 1 + a2 + a1 + a0 < 0,

−1 + a2 − a1 + a0 > 0, Case II: 1 + a2 + a1 + a0 > 0, −1 + a2 − a1 + a0 < 0, and either

|a2| > 3 or a2
0 − a0a2 + a1 − 1 > 0.

For Case I, the two inequalities reduce to:

ΨΥ(θπ − 1 + ρr) + (1− β)Ξθy
1− (1− wC)θπ

< 0, (C.53)

−2(1 + β)

(
1 +

ρr
[1− (1− wC)θπ]

)
+

ΨwCΥ(θπ − 1− ρr)− wC(1 + β)Ξθy
σ [1− (1− wC)θπ]

> 0. (C.54)

First assume that Υ > 0. If ΨΥ(θπ − 1 + ρr) + (1 − β)Ξθy > 0, conditions (C.53) and
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(C.54) require:

1

1− wC
< θπ <

(1 + ρr) [ΨwCΥ + 2σ(1 + β)]

ΨwCΥ + 2σ(1 + β)(1− wC)
+

wC(1 + β)Ξ

ΨwCΥ + 2σ(1 + β)(1− wC)
θy. (C.55)

For the determinacy region to be non-empty requires
(

wC
1−wC

) [
ΨwCΥ−(1−wC)(1+β)Ξθy

ΨwCΥ+2σ(1+β)

]
< ρr.

If ΨΥ(θπ − 1 + ρr) + (1− β)Ξθy < 0, condition (C.54) can never be satisfied since Ξ > 0.

Now assume that Υ < 0. If ΨΥ(θπ − 1 + ρr) + (1− β)Ξθy > 0, condition (C.53) requires:

Ξ > 0⇔ Υ >
σ(1− wC)

wC
− (ϕ+ σ)

wC(1− λ)(1 + ϕ)

[
wCλ+

σµC(1 + wC)(1− wC)

wC

]
(C.56)

and
1

1− wC
< θπ < 1− ρr −

(1− β)Ξ

ΨΥ
θy. (C.57)

For the determinacy region to be non-empty ρr < − (1−β)Ξ
ΨΥ θy − wC

1−wC , while condition

(C.54) requires:

θy >
θπ
Ξ

[
ΨΥ

1 + β
+

2σ(1− wC)

wC

]
− (1 + ρr)

Ξ

(
ΨΥ

1 + β
+

2σ

wC

)
. (C.58)

If ΨΥ(θπ − 1 + ρr) + (1 − β)Ξθy < 0, condition (C.53) requires that 1 − ρr − (1−β)Ξ
ΨΥ θy <

θπ <
1

1−wC and (C.54) requires (C.58) if Ξ < 0. Otherwise

θy <
θπ
Ξ

[
ΨΥ

1 + β
+

2σ(1− wC)

wC

]
− (1 + ρr)

Ξ

(
ΨΥ

1 + β
+

2σ

wC

)
(C.59)

and ρr > − (1−β)Ξ
ΨΥ θy − wC

1−wC for the determinacy region to be non-empty.

For Case II, the first two inequalities reduce to:

ΨΥ(θπ − 1 + ρr) + (1− β)Ξθy
1− (1− wC)θπ

> 0, (C.60)

−2(1 + β)

(
1 +

ρr
[1− (1− wC)θπ]

)
+

ΨwCΥ(θπ − 1− ρr)− wC(1 + β)Ξθy
σ [1− (1− wC)θπ]

< 0. (C.61)

First assume that Υ > 0. Equation (C.60) requires that 1 − ρr − (1−β)Ξ
ΨΥ θy < θπ <

1
1−wC

and (C.61) requires the upper-bound on θπ given by (C.55). The remaining inequalities
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give (C.48) and (C.49). Now assume that Υ < 0. Condition (C.60) requires either (i)

0 < θπ < min
{

1− ρr − (1−β)Ξ
ΨΥ θy,

1
1−wC

}
or (ii) max

{
1− ρr − (1−β)Ξ

ΨΥ θy,
1

1−wC

}
< θπ. For

(i), (C.61) is always satisfied if Ξ > 0. Otherwise, the upper-bound on θy given by (C.57)

is needed. The remaining inequalities give (C.48) and (C.49). For (ii), condition (C.61)

requires (C.59) if Ξ > 0 and (C.58) if Ξ < 0. The remaining inequalities give (C.48) and

(C.49). This completes the proof.

C.7 Determinacy Conditions under a Contemporaneous-Looking Rule

Proposition 8. (Current-looking rule) If the interest-rate rule reacts to current-looking

CPI inflation with interest-rate inertia, the necessary and sufficient conditions for deter-

minacy are:

Case I: Υ > 0, θπ > max{0, 1− ρr}, and one of the following inequalities is satisfied:

−1− 1

β
− ρr − θπ(1− wC)− ΨwCΥ

βσ
< −3, (C.62)

[θπ(1− wC) + ρr]

[
[θπ(1− wC) + ρr]

(1− β)

β
+ β − 1

β
− ΨwCΥ

βσ

]
+1− β +

ΨwCΥ (θπ + ρr)

σ
> 0. (C.63)

Case IIA: Υ < 0, θπ > max{0, 1− ρr}, and Υ < −2σ(1+β)[1+ρr+θπ(1−wC)]
ΨwC(1+ρr+θπ) .

Case IIB: Υ < 0, 0 < θπ < 1− ρr, Υ > −2σ(1+β)[1+ρr+θπ(1−wC)]
ΨwC(1+ρr+θπ) , and either (C.63) or

the following inequality∣∣∣∣−1− 1

β
− ρr − θπ(1− wC)− ΨwCΥ

βσ

∣∣∣∣ < −3 (C.64)

is satisfied.

Proof. The dynamic system is given by:

cRt+1 +
wC
σ
πH,t+1 −

wC
σ
rt = cRt , (C.65)
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(a) Open economy

(b) Closed economy

Figure 12: Determinacy regions for small model with current-CPI inflation feedback rule. Pa-
rameter values are Ψ = 0.086, ϕ = σ = 2, ζ = 7, β = 0.99, and wC = 0.6, µC = 0.62 for the open
economy (top panel) and wC = 1 for the closed economy (bottom panel). The red vertical line
gives λ∗ below which IADL holds.

βπH,t+1 = πH,t −ΨΥcRt , (C.66)

rt = ρrrt−1 + θππt = [ρr + θπ(1− wC)] rt−1 + wCθππH,t. (C.67)

This can be expressed as:

zt+1 = A4zt, zt =
[
cRt πH,t rt−1

]′
,

A4 ≡


1 + ΨwCΥ

βσ
wC
σ

(
wCθπ − 1

β

)
wC
σ [ρr + θπ(1− wC)]

−ΨΥ
β

1
β 0

0 wCθπ ρr + θπ(1− wC)

 .
The three eigenvalues of A4 are solutions to the cubic equation r3 + a2r

2 + a1r + a0 = 0,

where a2 = −1 − 1
β − ρr − θπ(1 − wC) − ΨwCΥ

βσ , a1 = 1
β + θπ(1−wC)(1+β)

β + ΨwCΥθπ
βσ +

ρr

(
1 + 1

β + ΨwCΥ
βσ

)
, and a0 = − θπ(1−wC)

β − ρr
β . With one predetermined variable rt, deter-

Page 24 of 45



minacy requires that one eigenvalue is inside the unit circle and two eigenvalues are outside

the unit circle. By Proposition C.2 of Woodford (2003), this is the case if and only if either

of the following two cases is satisfied: Case 1: 1+a2+a1+a0 < 0, −1+a2−a1+a0 > 0, Case

2: 1 +a2 +a1 +a0 > 0, −1 +a2−a1 +a0 < 0, and either |a2| > 3 or a2
0−a0a2 +a1−1 > 0.

For Case I, the second inequality can never be satisfied with Υ > 0. With Υ < 0, the

first inequality of Case I requires θπ > 1 − ρr and the second inequality yields reduces to

Υ > −2σ(1+β)[1+ρr+θπ(1−wC)]
ΨwC(1+ρr+θπ) . For Case II, the two inequalities are satisfied if θπ > 1− ρr,

provided Υ > 0. The remaining inequalities give (C.62) and (C.63). If Υ < 0, the first

inequality requires 0 < θπ < 1−ρr and the second inequality Υ > −2σ(1+β)[1+ρr+θπ(1−wC)]
ΨwC(1+ρr+θπ) .

The remaining inequalities give (C.63) and (C.64). This completes the proof.

The analytical conditions generate similar conclusions to a forward-looking domestic price

inflation rule. As shown in Figure 12, policy inertia shrinks the determinate policy space,

whereas trade openness enlarges the determinate policy space under SADL and shrinks it

under IADL.
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C.8 Determinacy Analysis under Incomplete Asset Markets, Trend In-

flation and Capital

Figures 13–15 show determinacy regions under incomplete asset markets (no capital, zero

trend inflation); incomplete asset markets, capital in production and 4% trend inflation;

and incomplete asset markets, capital in production and 6% trend inflation respectively.
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(b) Closed economy

Figure 13: Determinacy regions (white areas) for the LAMP model with incomplete asset markets.
Parameterization is given in Table 2 of appendix B.7. wC = 0.6 for the open economy (top panel)
and wC = 1 for the closed economy (bottom panel).
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(b) Closed economy

Figure 14: Determinacy regions (white areas) for the LAMP model with incomplete asset markets,
capital and 4% trend inflation. Parameterization is given in Table 2 of appendix B.7. wC = wI = 0.6
for the open economy (top panel) and wC = wI = 1 for the closed economy (bottom panel).
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Figure 15: Determinacy regions (white areas) for the LAMP model with incomplete asset markets,
capital and 6% trend inflation. Parameterization is given in Table 2 of appendix B.7. wC = wI = 0.6
for the open economy (top panel) and wC = wI = 1 for the closed economy (bottom panel).
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C.9 Determinacy Analysis under Dominant Currency Pricing

Figure 16 shows determinacy regions under dominant (or local) currency pricing and in-

complete asset markets. The top panel is with 4% trend inflation but without capital, and

the bottom shows both capital in production and 4% trend inflation.

 = 0

0 0.5 1
0

5

10
 = 0.5

0 0.5 1
0

5

10
 = 1

0 0.5 1
0

5

10
 = 1.5

0 0.5 1
0

5

10

(a) No capital, 4% trend inflation
 = 0

0 0.5 1
0

5

10
 = 0.5

0 0.5 1
0

5

10
 = 1

0 0.5 1
0

5

10
 = 1.5

0 0.5 1
0

5

10

(b) Capital in production, 4% trend inflation

Figure 16: Determinacy regions (white areas) for the LAMP model with incomplete asset markets
and dominant currency pricing. Parameterization is given in Table 2 of appendix B.7.
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C.10 Determinacy Analysis at the ZLB

This subsection overviews the environment and tests used to study the determinacy prop-

erties of the model with a zero lower bound (ZLB) on the nominal interest rate. The

necessary and sufficient conditions are discussed in detail in Holden (2022). First, note

that the interest-rate rule with a ZLB can be written as:

rt = ρrrt−1 + θππt+1 + ηt, (C.68)

where ηt is a partially anticipated add-factor defined as:

ηt ≡ max {0, r̄ + ρrrt−1 + θππt+1} − r̄ + ρrrt−1 + θππt+1. (C.69)

Because ηt is partially predictable it can be considered as a monetary policy news shock;

information that the ZLB will bind in k periods ahead is equivalent to news that ηt+k > 0.

Starting with a path for rt, ignoring the ZLB up to horizon T , the problem of computing the

sequence of ηt to impose the ZLB can be characterized as a linear complimentarity problem

(LCP). This is convenient because it is a well-studied problem in the mathematics literature

and so we can use existing tests to check the uniqueness and determinacy properties of a

particular interest-rate rule (see Holden, 2022). Let vector q ≡ [q1, · · · , qT ]′ be the path

of rt + r̄ ignoring the bound up to horizon T , and let M be a T × T matrix where the

nth column gives the values of [r1, · · · , rT ] conditional on an anticipated news shock, ηn

of size 1 in period t = n. Given the otherwise linearity of the model, conditional on a

path ignoring the bound q, and sequence of news shocks η ≡ [η1, · · · , ηT ]′, the path of the

interest rate is given by:

r + r̄ = q +Mη, (C.70)

where r ≡ [r1, · · · , rT ]′. M and q are readily solved using the linear model without a ZLB.

The LCP(q,M) is to solve the vector η to satisfy the following constraints:

η ≥ 0, (C.71)

q +Mη ≥ 0, (C.72)

y′ (q +Mη) = 0. (C.73)
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The above conditions are that news shocks must always be positive (C.71), the ZLB must

not be violated (C.72), and the complimentary slackness condition (C.73) which requires

that news shocks are only non-zero when the ZLB is binding. To determine whether there

are multiple equilibria or explosiveness (infeasibility) requires checking the properties of

matrix M .

Cottle, Pang and Stone (2009, ch. 3) show that uniqueness is guaranteed if, for all z ∈ RT×1

with z 6= 0, there exists t ∈ {1, ..., T} such that zt (Mz)t > 0. Following the notation of

Cottle et al. (2009) and Holden (2022), we refer to a matrix satisfying this condition as a

P-matrix. This is a particular definition of positivity and to gain some intuition, if M is a

P-matrix in our model, then monetary policy shocks must increase nominal interest rates.

This is consistent with the above description of a self-fulfilling ZLB episode which relies

on news shocks lowering nominal rates. A full test to determine whether M is a P-matrix

(a) Open economy

(b) Closed economy

Figure 17: Initial tests for multiplicity. The black area represents indeterminacy in the baseline
linear LAMP model, the white area indicates there is always a unique equilibrium conditional on
households expecting to be away from the ZLB in 200 quarters. Multiplicity cannot be ruled out
for the blue area. Parameterization is the same as in Figure 2 of the main text.
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(a) Open economy

(b) Closed economy

Figure 18: Minimum determinant of the 5 × 5 leading principal sub-matrix of M . A positive
values implies M is a P-matrix.

may be infeasible for a large horizon T , however it is possible to check other necessary and

sufficient conditions. For example, M is definitely a P-matrix if it is symmetric positive

definite and it is definitely not a P-matrix if it has any complex eigenvalues outside the

interval
(
−π + π

T , π −
π
T ,
)

(see Holden, 2022).39 Figure 17 shows the results of the initial

checks where, as before, the black area represents calibrations leading to indeterminacy in

the baseline linear LAMP model. The white area now represents calibrations for which

uniqueness is guaranteed providing the economy is expected to be away from the ZLB in 200

quarters. These initial checks show that when a determinate policy rule is available under

IADL, uniqueness is always guaranteed except for high values of θπ > max
{

1
1−wc ,Γ1

}
.

Under SADL, we cannot rule out multiplicity except when interest rate inertia is absent.

As an alternative, we can look to other indicative statistics such as the minimum deter-

minant of a principal sub-matrix of M . When this is positive, M is a P-matrix. This is

useful as it is a continuous measure and so allows us to gain insight as to whether a pa-

39Refer to Corollaries 4 and 5 in appendix C of Holden (2022) for the necessary and sufficient conditions.
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(a) Lagged interest rate in policy rule

(b) Lagged shadow rate in policy rule

Figure 19: The role of trade openness and policy inertia for the baseline model under a ZLB
setting λ = 1. The black areas represent indeterminacy in the linear model, the high values in
yellow correspond to better determinacy properties and low values in blue to worse properties.
Values >1 truncated to 1, and values < −0.4 to 0.4.

rameter worsens or improves the multiplicity properties of the model. Figure 18 presents

the results of this. A visual check of this reveals that policy inertia worsens the problem of

multiple equilibria under SADL. Increasing the response of policy to inflation also worsens

this problem. The reason being that a more aggressive policy stance will cut the interest

rate further if a future contraction is expected. It is this mechanism that can lead to a

self-fulfilling ZLB episode.

C.10.1 The Role of Trade Openness and Policy Inertia on the stability prop-

erties at the ZLB

We can look further at how policy inertia and trade openness affect the determinacy prop-

erties of the model under a ZLB using other indicative statistics. Figure 19 shows the

minimum determinant of a principal sub-matrix of M , where M is a 5 × 5 matrix con-

taining impulse response functions to a positive monetary policy news shocks at different
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horizons up to T = 5. When this determinant is positive, uniqueness is guaranteed (up to

T = 5).40

We focus on the SADL case and set λ = 1.41 For the interest-rate rule (3.15), except for

small values of ρr, higher policy inertia worsens the determinacy properties of both the

closed and open economy versions of the model. However, by including the lagged shadow

rate (3.16), policy inertia tends to improve the determinacy conditions, except for a small

interval of θπ in the open economy.

D Optimal Policy: Derivations and Proofs

D.1 Proof of Proposition 6

Under LAMP, the SOE government chooses monetary policy to maximize a utilitarian

social welfare given by λU(CRt , N
R
t ) + (1− λ)U(CCt , N

C
t ), where from (2.1) as σ → 1

U(Cit , N
i
t ) = logCit −

(
N i
t

)1+ϕ

1 + ϕ
, i = R,C. (D.1)

To approximate this welfare criterion we implement the standard algorithm of Taylor-series

expansion, in particular following the steps in Woodford (2003a), Benigno and Woodford

(2004), Gaĺı and Monacelli (2005), Bilbiie (2008), and Levine, Pearlman and Pierse (2008).

D.1.1 Step 1: Taylor Series Expansion

Taking a second-order Taylor linear expansion we get:

U
(
Cit , N

i
t

)
≈ U

(
C
i
t, N

i
t

)
+ UCi

(
Cit − C

i
t

)
+ UN i

(
N i
t −N

i
t

)
+

1

2

[
UCiCi

(
Cit − C

i
t

)2
+ 2UCiN i

(
Cit − C

i
t

)(
N i
t −N

i
t

)
+ UN iN i

(
N i
t −N

i
t

)2
]

i = R,C up to second order terms. (D.2)

40To understand why, consider that the determinant of M can be thought of as equivalent to a measure of
volume. The sign of the determinant gives information on the positivity of the response of monetary policy
to news shocks at different horizons. Recall from the earlier intuition of a ZLB-induced sunspot shock that
a self-fulfilling ZLB episode relies on a negative response of monetary policy to a positive monetary policy
shock at some horizon.

41Trade openness and policy inertia do not affect the outcomes under IADL, since we always have unique-
ness under IADL unless we are in the blue regions highlighted in Figure 6, when we always have multiplicity.
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Defining cit ≡
Cit−C

i
t

C
i
t

and nit ≡
N i
t−N

i
t

N
i
t

to be relative deviations about C
i
t or N

i
t, which can

be steady states or flexi-price equilibria, (D.2) becomes:

U
(
Cit , N

i
t

)
≈ U

(
C
i
t, N

i
t

)
+ UCiC

i
tc
i
t + UN i

t
N
i
tn
i
t

+
1

2

[
UCiCi(C

i
t)

2(cit)
2 + 2UCiN iC

i
N
i
citn

i
t + UN iN i(N

i
)2(nit)

2
]
, i = R,C.

(D.3)

(D.3) is completely general. Adopting our particular choice of preferences (D.1), we have

that UCiN i = 0, UCi = (C
i
t)
−1, UCiCi = −(C

i
t)
−2, UN i = −(N

i
t)
ϕ, UN iN i = −ϕ(N

i
t)
ϕ−1.

Then (D.3) becomes:

U
(
Cit , N

i
t

)
≈ U

(
C
i
t, N

i
t

)
+ cit − (N

i
t)

1+ϕnit

− 1

2

[
(cit)

2 + ϕ(Nt
i
)1+ϕ(nit)

2
]
, i = R,C.

Hence, the social welfare criterion, welt, is given approximately up to second order terms

by:

welt = U(CRt , N
R
t ) + (1− λ)U(CCt , N

C
t ) ≈ U(C

R
t , N

R
t ) + (1− λ)U(C

C
t , N

C
t )

+ λcRt + (1− λ)cCt − λ(N
R
t )1+ϕnRt + (1− λ)(N

C
t )1+ϕnCt

− 1

2

[
λ
(

(cRt )2 + ϕ(Nt
R

)1+ϕ(nRt )2
)

+ (1− λ)
(

(cCt )2 + ϕ(Nt
C

)1+ϕ(nCt )2
)]
.

(D.4)

(D.4) holds for our particular choice of household preferences for any baseline U(C
i
t, N

i
t),

about which the Taylor-series expansion (or approximation) is based. In our paper this

is the distorted equitable steady state. We now choose the optimal equitable flexi-price

equilibrium with a welfare-relevant output gap x1,t for which (N
R
t )1+ϕ = (N

C
t )1+ϕ = wC .

Then (D.4) becomes:

welt = λU(CRt , N
R
t ) + (1− λ)U(CCt , N

C
t ) ≈ λU(C

R
t , N

R
t ) + (1− λ)U(C

C
t , N

C
t )

+ λcRt + (1− λ)cCt − wC
[
λnRt + (1− λ)nCt

]
− 1

2

[
λ
(
(cRt )2 + ϕwC(nRt )2

)
+ (1− λ)

(
(cCt )2 + ϕwC(nCt )2

)]
. (D.5)
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D.1.2 Step 2: Use of the Resource Constraint in Linearized Form

To express this as a quadratic form we now impose the resource constraint which can be

expressed for our purposes as:

CwCt (CRt )1−wC = Y wC
t ((CRt

∗
)1−wC )1−wC , (D.6)

Yt =
AtNt

∆t
, (D.7)

Nt = λNR
t + (1− λ)NC

t , (D.8)

Ct = λCRt + (1− λ)CCt . (D.9)

Denoting any variable Zt in log-deviation form ẑt ≡ log
(
Zt/Z̄t

)
and in relative deviation

form by zt = (Zt − Z̄t)/Z̄t, a Taylor-series expansion gives

zt ≈ ẑt +
1

2
ẑ2
t (up to second order). (D.10)

In what follows, we take Z̄t to be the equitable flexi-price equilibrium supported by tax

subsidies set out in Proposition 3. Then xt = (Yt − Ȳt)/Ȳt becomes the output gap.

Taking logs, (D.6) and (D.7) can be written exactly as:

wC ĉt + (1− wC)ĉRt = wC x̂t + t.i.p., (D.11)

x̂t = n̂t − δ̂t + t.i.p., (D.12)

where terms independent of policy (t.i.p.) are those only involving shock processes y∗t and

at.

Now consider the linear term in (D.5) which can be written simply as ct − wCnt = ct −
wC(xt + δt) plus t.i.p.. Using (D.10) we have up to o(2):

ct − wCnt = λcRt + (1− λ)cCt − wC
[
λnRt + (1− λ)nCt

]
≈ λĉRt + (1− λ)ĉCt − wC

[
λ(n̂Rt + (1− λ)n̂Ct

]
+

1

2

[
λ(ĉRt )2 + (1− λ)(ĉCt )2 − wC

[
λ((n̂Rt )2 + (1− λ)(n̂Ct )2

]]
.
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Then (D.5) becomes:

welt = wel + ĉt − wC n̂t −
1

2

[
λ
(
(1 + ϕ)wC(nRt )2

)
+ (1− λ)

(
(1 + ϕ)wC(nCt )2

)]
. (D.13)

Using the exact log-linear resource constraint (D.11) we then have:

ĉt − wC x̂t = (1− wC)

(
x̂t −

1

wC
ĉRt

)
=

1− wC
wC

(wC x̂t − ĉRt )

=
1− wC
wC

(wC x̂t − ĉt + ĉt − ĉRt ). (D.14)

Hence, solving for ĉt − wC x̂t we arrive at

ĉt − wC x̂t = (1− wC)(ĉt − ĉRt ). (D.15)

To complete the transformation of (D.15) into second-order terms we recall relevant results

for the linearization of our model in log-deviation form from Appendix C.1:

ŵt = ϕn̂Rt + σĉRt ,

ŵt = ϕn̂Ct + σĉCt ,

nCt =
ϕ(1− σ)

ϕ+ σ
nRt +

σ(1− σ)

ϕ+ σ
cRt ,

x̂t = n̂t − δ̂t + t.i.p..

Setting σ = 1 we get:

nCt = n̂Ct = 0,

ĉCt − ĉRt = −ϕ(n̂Ct − n̂Rt ) = ϕn̂Rt ,

x̂t = λn̂Rt − δ̂t + t.i.p..

Using these results we obtain:

ĉt − wC x̂t = (1− wC)(ĉt − ĉRt )
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= (1− wC)(ct − cRt + o(2)) = (1− wC)(1− λ)(cCt − cRt + o(2))

= (1− wC)(1− λ)(ϕnRt + o(2)) =
(1− wC)(1− λ)

λ
ϕ(xt + o(2)).

In what follows, we consider the case where (1−wC)(1−λ)ϕ
λ is small42 and of the same order as

deviations of variables about the baseline flexi-price equilibrium allocation or steady state.

For example, even for a small open economy the share of imported consumption goods

(1 − wC) is typically less than 0.3. Further, if the share of RoT consumers (1 − λ) < 0.2

and ϕ = 2, then (1 − wC)(1 − λ)ϕ/λ < 0.15. For economies with these features we can

then treat (1− wC)(1− λ)ϕ/λxt as o(2).43

Gathering our results together we can now write (D.13) up to o(2) as:

welt − wel =
(1− wC)(1− λ)ϕ

λ
xt − wC δ̂t −

1

2

wC(1 + ϕ)x2
t

λ
. (D.16)

Note that with our distorted equitable steady state, standard derivations lead to an addi-

tional linear term ΦΨ
ζ xt as in the closed economy (see, for example, Gaĺı (2015)).

D.1.3 Step 3: Quadratic Approximation of Dispersion Term

The remaining step is to obtain a quadratic approximation for the price dispersion term δ̂t

in (D.16). To do this we use the following results:

∆t = ξΠζ
H,t∆t−1 + (1− ξ)

(
Jt
JJt

)−ζ
, (D.17)(

Jt
JJt

)1−ζ
=

1− ξΠζ−1
H,t

1− ξ
, (D.18)

where Jt
JJt

=
P 0
H,t

PH,t
is the optimal reset price. This results in ∆t = ∆(ΠH,t).

We now use a second-order Taylor-series expansion about a zero net inflation Π = ΠH = 1

to show that

δt = ξδt−1 +
ξζ

2(1− ξ)
π2
H,t. (D.19)

42Notice that this term vanishes in the closed TANK economy (of Bilbiie (2008)), with wC = 1, as well
as in the SOE model without LAMP (of Gaĺı and Monacelli (2005)), with λ = 1.

43This is analogous to the way small distortions in the steady state are incorporated into a quadratic
approximation in the literature.
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Proof

First write (D.17) and (D.18) as:

∆t = ξΠζ
H,t∆t−1 + (1− ξ)

(
1− ξΠζ−1

H,t

1− ξ

)− ζ
1−ζ

= ξΠζ
H,t∆t−1 + (1− ξ)

1
1−ζ
(

1− ξΠζ−1
H,t

) ζ
ζ−1

= ξF (ΠH,t,∆t−1) + (1− ξ)
1

1−ζG(ΠH,t). (D.20)

Next we expand F (ΠH,t,∆t−1) and G(ΠH,t) as Taylor series up to second order:

F (ΠH,t,∆t−1) = F (Π,∆) + FΠ(Π,∆)(ΠH,t −Π) + F∆(Π,∆)(∆t−1 −∆)

+
1

2

(
FΠ Π(Π,∆)(ΠH,t −Π)2 + 2FΠ ∆(Π,∆)(ΠH,t −Π)(∆t−1 −∆)

+F∆ ∆(Π,∆))(∆t−1 −∆)2

)
+ · · ·

G(ΠH,t) = G(Π) +G′(Π)(ΠH,t −Π) +
1

2
G′′(Π)(ΠH,t −Π)2 + · · ·

Subtract ∆ = ξF (Π,∆) + (1− ξ)
1

1−ζG(Π) from both sides of (D.20) to give:

∆t −∆ = ξ
(
FΠ(Π,∆)(ΠH,t −Π) + F∆(Π,∆)(∆t−1 −∆)

+
1

2

(
FΠ Π(Π,∆)(ΠH,t −Π)2 + 2FΠ ∆(Π,∆)(ΠH,t −Π)(∆t−1 −∆) + F∆ ∆(Π,∆))(∆t−1 −∆)2

) )
+ (1− ξ)

1
1−ζ

(
G′(Π)(ΠH,t −Π) +

1

2
G′′(Π)(ΠH,t −Π)2

)
.

Hence:

δt ≡
∆t −∆

∆
= ξ

(
FΠ(Π,∆)ΠπH,t + F∆(Π,∆)∆ δt−1

+
1

2

(
FΠ Π(Π,∆)Π2 π2

H,t + 2FΠ ∆(Π,∆)Π∆πH,tδt−1) + F∆ ∆(Π,∆))∆2 δ2
t−1

) )
+ (1− ξ)

1
1−ζ

(
G′(Π)ΠπH,t +

1

2
G′′2π2

H,t

)
, (D.21)

up to second-order terms.
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From the definitions

F (Π,∆) ≡ Πζ∆,

G(Π) ≡
(

1− ξΠζ−1
) ζ
ζ−1

,

we have:

FΠ(Π,∆) = ζΠζ−1∆,

F∆(Π,∆) = Πζ ,

FΠΠ(Π,∆) = ζ(ζ − 1)Πζ−2∆

G′ζ−2
(

1− ξΠζ−1
) 1
ζ−1

G′′2ζΠ2(ζ−1)
(

1− ξΠζ−1
) 1
ζ−1
−1
− ξζ(ζ − 2)Πζ−3

(
1− ξΠζ−1

) 1
ζ−1

.

About a zero net inflation steady state, Π = ∆ = 1 and we have:

FΠ(1, 1) = ζ,

FΠΠ(1, 1) = ζ(ζ − 1),

G′(1) = −ξζ (1− ξ)
1
ζ−1

G′′2ζ (1− ξ)
1
ζ−1
−1 − ξζ(ζ − 2) (1− ξ)

1
ζ−1 .

Hence the terms in πH,t,
(
ξFΠ(1, 1) + (1− ξ)

1
1−ζG′(1)Π

)
πH,t = 0. In other words, about a

zero net inflation steady state only second-order terms in inflation affect dispersion. Then,

with a little algebra, (D.19) follows from (D.21) and the derivatives above.

Now we complete the quadratic approximation using (D.19):

∞∑
t=0

βtδt =

∞∑
τ=1

βτ−1δτ−1 = β−1
∞∑
t=1

βtδt−1 = β−1(

∞∑
t=0

βtδt−1 − δ−1). (D.22)

Then assuming that prior to the optimization exercise the economy is at its steady state,

δ−1 = 0, and using (D.22), we have that

∞∑
t=0

βtδt−1 = β

∞∑
t=0

βtδt ⇒
∞∑
t=0

βt(δt − ξδt−1) = (1− ξβ)

∞∑
t=0

βtδt. (D.23)
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Hence, from (D.19) and (D.23) up to o(2) we have

∞∑
t=0

βtδt =
∞∑
t=0

βtδ̂t =
ξζ

2(1− βξ)(1− ξ)

∞∑
t=0

βtπ2
H,t. (D.24)

We can now write the intertemporal social welfare loss as:

Ω0 = E0

∞∑
t=0

βt
[
−(1− wC)(1− λ)xt + π2

H,t +
Ψ (1 + ϕ)

ςλ
x2
t

]
, (D.25)

where Ψ ≡ (1−βξ)(1−ξ)
ξ . The terms in xt in (D.25) can be written as wC(1+ϕ)

2λ (xt − xblisst )2

where xt has a bliss point xt = xblisst = (1−wC)(1−λ)λ
wC(1+ϕ) . This confirms the non-social-

optimality of the optimal equitable allocation emphasized in Proposition 3. The bliss

point as a function of λ reaches a maximum of (1−wC)
4wC(1+ϕ) at λ = 1

2 . For typical values

wC = 0.7 and ϕ = 2 this gives xblisst = 5%.

D.2 Proof of Proposition 7

First we introduce the lag operator L and write (4.21) as:

µt =
1

κ

(
$xt − Λx +

(
1− L

β

)
νt

)
. (D.26)

Substituting for µt into (4.22) we arrive at

πH,t +
1

κ
(1− L)

(
$xt − Λx +

(
1− L

β

)
νt

)
− ΞwC

β
Lνt = 0. (D.27)

Now define:

dt = πH,t +
1

κ
(1− L) ($xt − Λx) = πH,t +

1

κ
$(xt − xt−1), (D.28)

as a departure from the standard optimal condition (or ‘wedge’), where πH,t + 1
κ$(xt −

xt−1) = 0 in the case of no penalizing of the interest rate variance when wr = 0. Then

(D.27) becomes:

dt = −1

κ

(
1−

(
1 +

1

β
+
κΞwC
β

)
L+

L2

β

)
νt ≡ −

1

κ
F (L)νt. (D.29)
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Combining (4.23) and (D.29) we arrive at a relationship between the wedge and the nominal

interest rate:

dt =
wr

κΞwC
F (L)rt =

wr
κΞwC

(
rt −

(
1 +

1

β
+
κΞwC
β

)
rt−1 +

1

β
rt−2

)
. (D.30)

Equation (D.30) defines the optimal policy in terms of a second-order process for the

interest rate rt and a target in the form of a wedge dt. In the long run it converges to

rt = −
κΞwC
wr

κΞwC
β

dt = − β
wr
dt. A first-order dynamic approximation to (D.30) that resembles a

Taylor-type rule with (super) inertia and has the same long-run property is then:

dt =
wr

κΞwC
F (L)rt =

wr
κΞwC

(
rt −

(
1 +

κΞwC
β

)
rt−1

)
. (D.31)

We now investigate another first-order Taylor-type rule with interest-rate inertia that ap-

proximates the optimal rule. The expression F (L) has two roots, one within and one outside

the unit circle. It follows that rt = κΞwC
wr

F (L)−1dt, which potentially gives an interest rate

rule responding to past wedges, is not a convergent infinite series, hence ruling out this

option. This is a problem of non-invertibility found in the econometrics literature when

faced with the existence of a SVAR representation of the RE solution of a macroeconomic

DSGE model.

Now define:

F (L) = (L− γ1)(L− γ2), (D.32)

where γ = γi, i = 1, 2 are the roots of F (L) = 0. Then the two roots are given by:

γ =
1 + 1

β + κΞwC
β ±

√(
1 + 1

β + κΞwC
β

)2
− 4

β

2
. (D.33)

Now consider two cases: (1) Ξ > 0; and (2) the IADL case Ξ < 0. For case (1), since(
1 + 1

β + κΞwC
β

)2
− 4
β =

(
1− 1

β

)2
+2
(

1 + 1
β
κΞwC
β

)
+ (κΞwC)2

β2 both roots are real. Moreover

it can be shown that one root say, γ1 > 1, and the other, γ2 < 1. The existence of the

latter root inside the unit circle means F (L) is not invertible. To resolve the problem put
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F (L)rt = (L− γ1)(1− γ2)rt = (L− γ1)(1− γ2L)
(L− γ2)

(1− γ2L)
rt ≡ (L− γ1)(1− γ2L)B(L)rt,

(D.34)

where

B(L) =
L− γ2

1− γ2L
(D.35)

is a Blaschke factor with the property that B(L−1) = (B(L))−1.

Let r∗t ≡ B(L)rt. Then it is easy to show that r∗t = rt − Et−1rt is the one-period-ahead

prediction error (the ‘innovation’). From (D.30) we now can express the rule in terms of

r∗t and past realizations of the wedge dt−i, i = 0, 1, · · ·

r∗t =

κΞwC
wr

(L− γ1)(1− γ2L)
dt (D.36)

= −
κΞwC
wrγ1

γ1(1− L
γ1

)(1− γ2L)
dt (D.37)

= −κΞwC
wrγ1

(
1 +

L

γ1
+

(
L

γ1

)2

+ · · ·

)(
1 + γ2L+ (γ2L)2 + · · ·

)
dt (D.38)

= −κΞwC
wrγ1

∞∑
i=0

πidt−i, (D.39)

where because 1
γ1
< 1 and γ2 < 1 the series in the lag operator L are convergent.

Note that from (D.35) we have

(1− γ2L)r∗t = r∗t − γ2r
∗
t−1 = (L− γ2)rt = rt−1 − γ2rt. (D.40)

It follows that we can write the interest rate rule as:
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rt −
1

γ2
rt−1 =

κΞwC
wrγ1

∞∑
i=0

π̃idt−i, (D.41)

which since 1
γ2
> 1 is a super-inertial rule in past wedges. The rule can be implemented

using a finite order approximation to the infinite series. For example a first order approx-

imation gives

rt =
1

γ2
+
κΞwC
wrγ1

[
dt +

(
1

γ1
+ γ2

)
dt−1

]
. (D.42)

All this assumes real roots for (D.33) which holds for the standard case without IADL, but

not for the IADL case. In this case only the approximation (D.31) is available, which can

be written as the rule (4.26). This completes the proof. �

D.3 Implementation of optimal policy

We can relate the approximation of the optimal rule of equation (4.26) to the implemen-

tation in section 3. First note, the approximation to the optimal rule can be written

as

rt =

(
1 +

κΞwC
β

)
rt−1 +

κΞwC
wr

πH,t +
κΞwC
wr

$

κ
(xt − xt−1). (D.43)

For determinacy analysis, we can set all shocks to zero and we have xt = yt. We substitute

in the NKPC (4.13) then (C.13) to give

rt =

(
1 + κΞwC

β

1 + βκΞ(1−wC)
wr

)
rt−1 +

κΞβ
wr

1 + βκΞ(1−wC)
wr

πt+1

+

ΞwC
wr

κ2

1 + βκΞ(1−wC)
wr

yt +

ΞwC
wr

$

1 + βκΞ(1−wC)
wr

(yt − yt−1). (D.44)

Note that using (C.11) and (C.24), and combining with (4.13) then (C.13), we can write

output growth as:

yt − yt−1 = −Ξ

σ

(
wCrt−1 − wCβ

1

wC
πt+1 + wCβ

1− wC
wC

rt − wCκyt
)
. (D.45)
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This can be substituted into the rule to give:

rt =

 1 +
(
κ
β −

Ξ
σ
$wC
wr

)
ΞwC

1 + βΞ(1−wC)
wr

(
κ+ ΞwC$

σ

)
 rt−1

+

 κ+ Ξ
σwC$

1 + βΞ(1−wC)
wr

(
κ+ ΞwC$

σ

) Ξ

wr
β

πt+1

+

 κ+ Ξ
σwC$

1 + βΞ(1−wC)
wr

(
κ+ ΞwC$

σ

) Ξ

wr
wCκ

2

 yt, (D.46)

or

rt = ρrt−1 + θππt+1 + θyyt. (D.47)

Finally, note that θy = wCκ
2

β θπ and that κ is between 0.25 and 0.4 in the baseline parame-

terizations, θπ is approximately 6–16 times larger than θy, and so we can approximate the

rule with:

rt = ρrt−1 + θππt+1. (D.48)

D.4 Optimal policy numerical simulations

Figures 20 and 21 present simulations in response to an AR(1) mark-up shock for the

optimal policy given in equation (4.25). We set the persistence parameter at ρu = 0.7 and

for the remaining parameters we use the restricted parameterization given in Section 4.2.

Figure 20 displays the effect of higher interest-rate stabilization brought about by increasing

the penalty parameter wr for the cases of λ > λ∗ (panel (a)) and λ < λ∗ (panel (b)), where

λ∗ is the IADL threshold given by (4.18), which equals λ∗ = 0.546 with wC = 0.6 and

ϕ = 2. This nearly exactly resembles the simulations using the the first-order Taylor-type

rule shown in Figure 9 but without the presence of a small degree of oscillations in the

IADL case.

Figure 21 compares differing degrees of trade openness under the optimal policy. Again,

this is similar to the outcome under the approximation to the optimal policy but this time

the oscillations are seen to be more pronounced, especially in the closed economy. This is
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because in the IADL case, monetary policy responds less to inflation and output and has

a higher degree of policy inertia.
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Figure 20: Optimal policy and variance penalty for wr = 0.1 (black line), wr = 1 (red line) and
wr = 10 (blue line). Parameter values are λ = 0.5, 0.7, Ψ = 0.086, ϕ = 2, β = 0.99, σ = µC = 1,
wC = 0.6.
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Figure 21: Optimal policy and openness for wC = 1 (black line), wC = 0.8 (red line) and wC = 0.6
(blue line). Parameter values are λ = 0.5, 0.7, Ψ = 0.086, ϕ = 2, β = 0.99, and σ = µC = wr = 1.
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